Solve the following equation and find the value of $x$.
$\dfrac{{x + \sqrt {{x^2} - 1} }}{{x - \sqrt {{x^2} - 1} }} - \dfrac{{x - \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} = 8x\sqrt {{x^2} - 3x + 2} $
Answer
366.6k+ views
Hint- Solve the equation step by step by taking common and further factorizing the terms and taking common.
Given that:
$\dfrac{{x + \sqrt {{x^2} - 1} }}{{x - \sqrt {{x^2} - 1} }} - \dfrac{{x - \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} = 8x\sqrt {{x^2} - 3x + 2} $
By taking LCM on the LHS and proceeding further
$ \Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - {{\left( {x - \sqrt {{x^2} - 1} } \right)}^2}}}{{\left( {x - \sqrt {{x^2} - 1} } \right)\left( {x + \sqrt {{x^2} - 1} } \right)}} = 8x\sqrt {{x^2} - 3x + 2} $
Breaking the terms in the numerator using algebraic identities
$
\left[ {\because {{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2} = 4ab} \right] \\
\left[ {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right] \\
$
Using the above identity in the numerator and denominator respectively we get:
$
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{{{x^2} - \left( {{x^2} - 1} \right)}} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{1} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow x\sqrt {{x^2} - 1} = 2x\sqrt {{x^2} - 3x + 2} \\
$
Bringing all of the terms of the equation in order to solve further:
\[
\Rightarrow x\sqrt {{x^2} - 1} - 2x\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow x\left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0 \\
\]
Further we have two results for now that is:
$ \Rightarrow x = 0\& \left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0$
Now we have one solution and still further solving second part:
$
\Rightarrow \sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow \sqrt {{x^2} - 1} = 2\sqrt {{x^2} - 3x + 2} \\
$
Further squaring both the sides of equation, we get:
\[
\Rightarrow {x^2} - 1 = 4\left( {{x^2} - 3x + 2} \right) \\
\Rightarrow {x^2} - 1 = 4{x^2} - 12x + 8 \\
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\]
Further splitting the middle term in order to solve the equation we have:
\[
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\Rightarrow 3\left( {{x^2} - 4x + 3} \right) = 0 \\
\Rightarrow {x^2} - 4x + 3 = 0 \\
\Rightarrow {x^2} - 3x - x + 3 = 0 \\
\Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {x + 1} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = - 1\& x = 3 \\
\]
Hence, we have three different solutions
$x = 0, - 1,3$
Note- In order to solve such questions containing different complex and large terms, the best way to start is to manipulate the equations in order to satisfy some algebraic identities as then the questions become a bit less lengthy and easier to solve. The algebraic identities used here are mentioned along with the solution and must be remembered.
Given that:
$\dfrac{{x + \sqrt {{x^2} - 1} }}{{x - \sqrt {{x^2} - 1} }} - \dfrac{{x - \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} = 8x\sqrt {{x^2} - 3x + 2} $
By taking LCM on the LHS and proceeding further
$ \Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - {{\left( {x - \sqrt {{x^2} - 1} } \right)}^2}}}{{\left( {x - \sqrt {{x^2} - 1} } \right)\left( {x + \sqrt {{x^2} - 1} } \right)}} = 8x\sqrt {{x^2} - 3x + 2} $
Breaking the terms in the numerator using algebraic identities
$
\left[ {\because {{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2} = 4ab} \right] \\
\left[ {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right] \\
$
Using the above identity in the numerator and denominator respectively we get:
$
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{{{x^2} - \left( {{x^2} - 1} \right)}} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{1} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow x\sqrt {{x^2} - 1} = 2x\sqrt {{x^2} - 3x + 2} \\
$
Bringing all of the terms of the equation in order to solve further:
\[
\Rightarrow x\sqrt {{x^2} - 1} - 2x\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow x\left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0 \\
\]
Further we have two results for now that is:
$ \Rightarrow x = 0\& \left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0$
Now we have one solution and still further solving second part:
$
\Rightarrow \sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow \sqrt {{x^2} - 1} = 2\sqrt {{x^2} - 3x + 2} \\
$
Further squaring both the sides of equation, we get:
\[
\Rightarrow {x^2} - 1 = 4\left( {{x^2} - 3x + 2} \right) \\
\Rightarrow {x^2} - 1 = 4{x^2} - 12x + 8 \\
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\]
Further splitting the middle term in order to solve the equation we have:
\[
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\Rightarrow 3\left( {{x^2} - 4x + 3} \right) = 0 \\
\Rightarrow {x^2} - 4x + 3 = 0 \\
\Rightarrow {x^2} - 3x - x + 3 = 0 \\
\Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {x + 1} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = - 1\& x = 3 \\
\]
Hence, we have three different solutions
$x = 0, - 1,3$
Note- In order to solve such questions containing different complex and large terms, the best way to start is to manipulate the equations in order to satisfy some algebraic identities as then the questions become a bit less lengthy and easier to solve. The algebraic identities used here are mentioned along with the solution and must be remembered.
Last updated date: 27th Sep 2023
•
Total views: 366.6k
•
Views today: 8.66k
Recently Updated Pages
What do you mean by public facilities

Please Write an Essay on Disaster Management

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
