Solve the following equation and find the value of $x$.
$\dfrac{{x + \sqrt {{x^2} - 1} }}{{x - \sqrt {{x^2} - 1} }} - \dfrac{{x - \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} = 8x\sqrt {{x^2} - 3x + 2} $
Last updated date: 20th Mar 2023
•
Total views: 308.1k
•
Views today: 3.89k
Answer
308.1k+ views
Hint- Solve the equation step by step by taking common and further factorizing the terms and taking common.
Given that:
$\dfrac{{x + \sqrt {{x^2} - 1} }}{{x - \sqrt {{x^2} - 1} }} - \dfrac{{x - \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} = 8x\sqrt {{x^2} - 3x + 2} $
By taking LCM on the LHS and proceeding further
$ \Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - {{\left( {x - \sqrt {{x^2} - 1} } \right)}^2}}}{{\left( {x - \sqrt {{x^2} - 1} } \right)\left( {x + \sqrt {{x^2} - 1} } \right)}} = 8x\sqrt {{x^2} - 3x + 2} $
Breaking the terms in the numerator using algebraic identities
$
\left[ {\because {{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2} = 4ab} \right] \\
\left[ {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right] \\
$
Using the above identity in the numerator and denominator respectively we get:
$
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{{{x^2} - \left( {{x^2} - 1} \right)}} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{1} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow x\sqrt {{x^2} - 1} = 2x\sqrt {{x^2} - 3x + 2} \\
$
Bringing all of the terms of the equation in order to solve further:
\[
\Rightarrow x\sqrt {{x^2} - 1} - 2x\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow x\left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0 \\
\]
Further we have two results for now that is:
$ \Rightarrow x = 0\& \left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0$
Now we have one solution and still further solving second part:
$
\Rightarrow \sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow \sqrt {{x^2} - 1} = 2\sqrt {{x^2} - 3x + 2} \\
$
Further squaring both the sides of equation, we get:
\[
\Rightarrow {x^2} - 1 = 4\left( {{x^2} - 3x + 2} \right) \\
\Rightarrow {x^2} - 1 = 4{x^2} - 12x + 8 \\
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\]
Further splitting the middle term in order to solve the equation we have:
\[
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\Rightarrow 3\left( {{x^2} - 4x + 3} \right) = 0 \\
\Rightarrow {x^2} - 4x + 3 = 0 \\
\Rightarrow {x^2} - 3x - x + 3 = 0 \\
\Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {x + 1} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = - 1\& x = 3 \\
\]
Hence, we have three different solutions
$x = 0, - 1,3$
Note- In order to solve such questions containing different complex and large terms, the best way to start is to manipulate the equations in order to satisfy some algebraic identities as then the questions become a bit less lengthy and easier to solve. The algebraic identities used here are mentioned along with the solution and must be remembered.
Given that:
$\dfrac{{x + \sqrt {{x^2} - 1} }}{{x - \sqrt {{x^2} - 1} }} - \dfrac{{x - \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} = 8x\sqrt {{x^2} - 3x + 2} $
By taking LCM on the LHS and proceeding further
$ \Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - {{\left( {x - \sqrt {{x^2} - 1} } \right)}^2}}}{{\left( {x - \sqrt {{x^2} - 1} } \right)\left( {x + \sqrt {{x^2} - 1} } \right)}} = 8x\sqrt {{x^2} - 3x + 2} $
Breaking the terms in the numerator using algebraic identities
$
\left[ {\because {{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2} = 4ab} \right] \\
\left[ {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right] \\
$
Using the above identity in the numerator and denominator respectively we get:
$
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{{{x^2} - \left( {{x^2} - 1} \right)}} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{1} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow x\sqrt {{x^2} - 1} = 2x\sqrt {{x^2} - 3x + 2} \\
$
Bringing all of the terms of the equation in order to solve further:
\[
\Rightarrow x\sqrt {{x^2} - 1} - 2x\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow x\left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0 \\
\]
Further we have two results for now that is:
$ \Rightarrow x = 0\& \left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0$
Now we have one solution and still further solving second part:
$
\Rightarrow \sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow \sqrt {{x^2} - 1} = 2\sqrt {{x^2} - 3x + 2} \\
$
Further squaring both the sides of equation, we get:
\[
\Rightarrow {x^2} - 1 = 4\left( {{x^2} - 3x + 2} \right) \\
\Rightarrow {x^2} - 1 = 4{x^2} - 12x + 8 \\
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\]
Further splitting the middle term in order to solve the equation we have:
\[
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\Rightarrow 3\left( {{x^2} - 4x + 3} \right) = 0 \\
\Rightarrow {x^2} - 4x + 3 = 0 \\
\Rightarrow {x^2} - 3x - x + 3 = 0 \\
\Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {x + 1} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = - 1\& x = 3 \\
\]
Hence, we have three different solutions
$x = 0, - 1,3$
Note- In order to solve such questions containing different complex and large terms, the best way to start is to manipulate the equations in order to satisfy some algebraic identities as then the questions become a bit less lengthy and easier to solve. The algebraic identities used here are mentioned along with the solution and must be remembered.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
