
Solve the following equation and find the value of $x$.
$\dfrac{{x + \sqrt {{x^2} - 1} }}{{x - \sqrt {{x^2} - 1} }} - \dfrac{{x - \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} = 8x\sqrt {{x^2} - 3x + 2} $
Answer
624k+ views
Hint- Solve the equation step by step by taking common and further factorizing the terms and taking common.
Given that:
$\dfrac{{x + \sqrt {{x^2} - 1} }}{{x - \sqrt {{x^2} - 1} }} - \dfrac{{x - \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} = 8x\sqrt {{x^2} - 3x + 2} $
By taking LCM on the LHS and proceeding further
$ \Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - {{\left( {x - \sqrt {{x^2} - 1} } \right)}^2}}}{{\left( {x - \sqrt {{x^2} - 1} } \right)\left( {x + \sqrt {{x^2} - 1} } \right)}} = 8x\sqrt {{x^2} - 3x + 2} $
Breaking the terms in the numerator using algebraic identities
$
\left[ {\because {{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2} = 4ab} \right] \\
\left[ {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right] \\
$
Using the above identity in the numerator and denominator respectively we get:
$
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{{{x^2} - \left( {{x^2} - 1} \right)}} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{1} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow x\sqrt {{x^2} - 1} = 2x\sqrt {{x^2} - 3x + 2} \\
$
Bringing all of the terms of the equation in order to solve further:
\[
\Rightarrow x\sqrt {{x^2} - 1} - 2x\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow x\left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0 \\
\]
Further we have two results for now that is:
$ \Rightarrow x = 0\& \left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0$
Now we have one solution and still further solving second part:
$
\Rightarrow \sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow \sqrt {{x^2} - 1} = 2\sqrt {{x^2} - 3x + 2} \\
$
Further squaring both the sides of equation, we get:
\[
\Rightarrow {x^2} - 1 = 4\left( {{x^2} - 3x + 2} \right) \\
\Rightarrow {x^2} - 1 = 4{x^2} - 12x + 8 \\
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\]
Further splitting the middle term in order to solve the equation we have:
\[
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\Rightarrow 3\left( {{x^2} - 4x + 3} \right) = 0 \\
\Rightarrow {x^2} - 4x + 3 = 0 \\
\Rightarrow {x^2} - 3x - x + 3 = 0 \\
\Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {x + 1} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = - 1\& x = 3 \\
\]
Hence, we have three different solutions
$x = 0, - 1,3$
Note- In order to solve such questions containing different complex and large terms, the best way to start is to manipulate the equations in order to satisfy some algebraic identities as then the questions become a bit less lengthy and easier to solve. The algebraic identities used here are mentioned along with the solution and must be remembered.
Given that:
$\dfrac{{x + \sqrt {{x^2} - 1} }}{{x - \sqrt {{x^2} - 1} }} - \dfrac{{x - \sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} = 8x\sqrt {{x^2} - 3x + 2} $
By taking LCM on the LHS and proceeding further
$ \Rightarrow \dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - {{\left( {x - \sqrt {{x^2} - 1} } \right)}^2}}}{{\left( {x - \sqrt {{x^2} - 1} } \right)\left( {x + \sqrt {{x^2} - 1} } \right)}} = 8x\sqrt {{x^2} - 3x + 2} $
Breaking the terms in the numerator using algebraic identities
$
\left[ {\because {{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2} = 4ab} \right] \\
\left[ {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right] \\
$
Using the above identity in the numerator and denominator respectively we get:
$
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{{{x^2} - \left( {{x^2} - 1} \right)}} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow \dfrac{{4x\sqrt {{x^2} - 1} }}{1} = 8x\sqrt {{x^2} - 3x + 2} \\
\Rightarrow x\sqrt {{x^2} - 1} = 2x\sqrt {{x^2} - 3x + 2} \\
$
Bringing all of the terms of the equation in order to solve further:
\[
\Rightarrow x\sqrt {{x^2} - 1} - 2x\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow x\left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0 \\
\]
Further we have two results for now that is:
$ \Rightarrow x = 0\& \left[ {\sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} } \right] = 0$
Now we have one solution and still further solving second part:
$
\Rightarrow \sqrt {{x^2} - 1} - 2\sqrt {{x^2} - 3x + 2} = 0 \\
\Rightarrow \sqrt {{x^2} - 1} = 2\sqrt {{x^2} - 3x + 2} \\
$
Further squaring both the sides of equation, we get:
\[
\Rightarrow {x^2} - 1 = 4\left( {{x^2} - 3x + 2} \right) \\
\Rightarrow {x^2} - 1 = 4{x^2} - 12x + 8 \\
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\]
Further splitting the middle term in order to solve the equation we have:
\[
\Rightarrow 3{x^2} - 12x + 9 = 0 \\
\Rightarrow 3\left( {{x^2} - 4x + 3} \right) = 0 \\
\Rightarrow {x^2} - 4x + 3 = 0 \\
\Rightarrow {x^2} - 3x - x + 3 = 0 \\
\Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {x + 1} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = - 1\& x = 3 \\
\]
Hence, we have three different solutions
$x = 0, - 1,3$
Note- In order to solve such questions containing different complex and large terms, the best way to start is to manipulate the equations in order to satisfy some algebraic identities as then the questions become a bit less lengthy and easier to solve. The algebraic identities used here are mentioned along with the solution and must be remembered.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Who is eligible for RTE class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


