
Solve the following equation: $5\sqrt {\frac{3}{x}} + 7 + \sqrt {\frac{x}{3}} = 22\frac{2}{3}.$
Answer
609.9k+ views
Hint: we need to know the basic factorization of quadratic equations to solve this problem.
Given equation is $5\sqrt {\frac{3}{x}} + 7 + \sqrt {\frac{x}{3}} = 22\frac{2}{3}$
For simplification of calculations put $t = \sqrt {\frac{3}{x}} $ then $\sqrt {\frac{x}{3}} = \frac{1}{t}$ , then the given equation will be
$5t + \frac{7}{t} = \frac{{68}}{3}$
Simplifying the above equation
$\frac{{5{t^2} + 7}}{t} = \frac{{68}}{3}$
$15{t^2} + 21 = 68t$
$15{t^2} - 68t + 21 = 0$
Now we got a quadratic equation, on factorization we get
$15{t^2} - 5t - 63t + 21 = 0$
$5t(3t - 1) - 21(3t - 1) = 0$
$(5t - 21)(3t - 1) = 0$
$t = \frac{{21}}{5},\frac{1}{3}$
Now, we know that $t = \sqrt {\frac{3}{x}} $
${t^2} = \frac{3}{x}$
$x = \frac{3}{{{t^2}}}$ , solving for the values of x using t value.
For $t = \frac{{21}}{5}$
$$x = \frac{3}{{{{\left( {\frac{{21}}{5}} \right)}^2}}} = \frac{{25}}{{147}}$$
For $t = \frac{1}{3}$
$x = \frac{3}{{{{\left( {\frac{1}{3}} \right)}^2}}} = 27$
$\therefore x = 27,\frac{{25}}{{147}}$ are the required values.
Note: Here we are converting the given equation into a quadratic equation by using the substitution method. We substituted $\sqrt {\frac{3}{x}} $as t, after substitution we simplified the equation and solved for t. After getting t values, we have to again substitute the value of t in terms of x, then finding x values easily.
Given equation is $5\sqrt {\frac{3}{x}} + 7 + \sqrt {\frac{x}{3}} = 22\frac{2}{3}$
For simplification of calculations put $t = \sqrt {\frac{3}{x}} $ then $\sqrt {\frac{x}{3}} = \frac{1}{t}$ , then the given equation will be
$5t + \frac{7}{t} = \frac{{68}}{3}$
Simplifying the above equation
$\frac{{5{t^2} + 7}}{t} = \frac{{68}}{3}$
$15{t^2} + 21 = 68t$
$15{t^2} - 68t + 21 = 0$
Now we got a quadratic equation, on factorization we get
$15{t^2} - 5t - 63t + 21 = 0$
$5t(3t - 1) - 21(3t - 1) = 0$
$(5t - 21)(3t - 1) = 0$
$t = \frac{{21}}{5},\frac{1}{3}$
Now, we know that $t = \sqrt {\frac{3}{x}} $
${t^2} = \frac{3}{x}$
$x = \frac{3}{{{t^2}}}$ , solving for the values of x using t value.
For $t = \frac{{21}}{5}$
$$x = \frac{3}{{{{\left( {\frac{{21}}{5}} \right)}^2}}} = \frac{{25}}{{147}}$$
For $t = \frac{1}{3}$
$x = \frac{3}{{{{\left( {\frac{1}{3}} \right)}^2}}} = 27$
$\therefore x = 27,\frac{{25}}{{147}}$ are the required values.
Note: Here we are converting the given equation into a quadratic equation by using the substitution method. We substituted $\sqrt {\frac{3}{x}} $as t, after substitution we simplified the equation and solved for t. After getting t values, we have to again substitute the value of t in terms of x, then finding x values easily.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

