
Solve the following equation:
${2^{2x + 1}} - 33 \cdot {2^{x - 1}} + 4 = 0$
Answer
602.4k+ views
Hint: Here we go through by breaking the exponents into two terms i.e. by writing ${2^{2x + 1}} = 2 \cdot {2^{2x}}$ and ${2^{x - 1}} = \dfrac{{{2^x}}}{2}$then let the term ${2^x}$ as t and form the quadratic equation. By solving the quadratic equation we find the value of t after that equate with ${2^x}$to get the answer.
Complete step-by-step answer:
${2^{2x + 1}} - 33 \cdot {2^{x - 1}} + 4 = 0$
Now break the terms ${2^{2x + 1}} = 2 \cdot {2^{2x}}$and ${2^{x - 1}} = \dfrac{{{2^x}}}{2}$ as we know the rule of exponents i.e.${a^m} \cdot {a^n} = {a^{m + n}}$ and \[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\].
Now we write it as,
now let the term ${2^x}$ as t.
$2{t^2} - \dfrac{{33}}{2}t + 4 = 0$ here we see that it is forming a quadratic equation.
$4{t^2} - 33t + 8 = 0$
Now we have to make it in factor form.
$4{t^2} - 32t - t + 8 = 0$
$4t\left( {t - 8} \right) - 1\left( {t - 8} \right) = 0$
$
\left( {t - 8} \right)\left( {4t - 1} \right) = 0 \\
\therefore t = 8,t = \dfrac{1}{4} \\
$
Now as we have assumed ${2^x} = t$
So, ${2^x} = 8 \Rightarrow \therefore x = 3$ or ${2^x} = \dfrac{1}{4} \Rightarrow \therefore x = - 2$
Hence x=3 and x= -2 are the required answer.
Note: For solving this type of question you have to use the concept of exponent and to solve it further consider an exponent as a variable then it may become a quadratic equation as in this question and then you can solve it easily.
Complete step-by-step answer:
${2^{2x + 1}} - 33 \cdot {2^{x - 1}} + 4 = 0$
Now break the terms ${2^{2x + 1}} = 2 \cdot {2^{2x}}$and ${2^{x - 1}} = \dfrac{{{2^x}}}{2}$ as we know the rule of exponents i.e.${a^m} \cdot {a^n} = {a^{m + n}}$ and \[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\].
Now we write it as,
now let the term ${2^x}$ as t.
$2{t^2} - \dfrac{{33}}{2}t + 4 = 0$ here we see that it is forming a quadratic equation.
$4{t^2} - 33t + 8 = 0$
Now we have to make it in factor form.
$4{t^2} - 32t - t + 8 = 0$
$4t\left( {t - 8} \right) - 1\left( {t - 8} \right) = 0$
$
\left( {t - 8} \right)\left( {4t - 1} \right) = 0 \\
\therefore t = 8,t = \dfrac{1}{4} \\
$
Now as we have assumed ${2^x} = t$
So, ${2^x} = 8 \Rightarrow \therefore x = 3$ or ${2^x} = \dfrac{1}{4} \Rightarrow \therefore x = - 2$
Hence x=3 and x= -2 are the required answer.
Note: For solving this type of question you have to use the concept of exponent and to solve it further consider an exponent as a variable then it may become a quadratic equation as in this question and then you can solve it easily.
Recently Updated Pages
Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

