
Solve the following equation:
${2^{2x + 1}} - 33 \cdot {2^{x - 1}} + 4 = 0$
Answer
612.9k+ views
Hint: Here we go through by breaking the exponents into two terms i.e. by writing ${2^{2x + 1}} = 2 \cdot {2^{2x}}$ and ${2^{x - 1}} = \dfrac{{{2^x}}}{2}$then let the term ${2^x}$ as t and form the quadratic equation. By solving the quadratic equation we find the value of t after that equate with ${2^x}$to get the answer.
Complete step-by-step answer:
${2^{2x + 1}} - 33 \cdot {2^{x - 1}} + 4 = 0$
Now break the terms ${2^{2x + 1}} = 2 \cdot {2^{2x}}$and ${2^{x - 1}} = \dfrac{{{2^x}}}{2}$ as we know the rule of exponents i.e.${a^m} \cdot {a^n} = {a^{m + n}}$ and \[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\].
Now we write it as,
now let the term ${2^x}$ as t.
$2{t^2} - \dfrac{{33}}{2}t + 4 = 0$ here we see that it is forming a quadratic equation.
$4{t^2} - 33t + 8 = 0$
Now we have to make it in factor form.
$4{t^2} - 32t - t + 8 = 0$
$4t\left( {t - 8} \right) - 1\left( {t - 8} \right) = 0$
$
\left( {t - 8} \right)\left( {4t - 1} \right) = 0 \\
\therefore t = 8,t = \dfrac{1}{4} \\
$
Now as we have assumed ${2^x} = t$
So, ${2^x} = 8 \Rightarrow \therefore x = 3$ or ${2^x} = \dfrac{1}{4} \Rightarrow \therefore x = - 2$
Hence x=3 and x= -2 are the required answer.
Note: For solving this type of question you have to use the concept of exponent and to solve it further consider an exponent as a variable then it may become a quadratic equation as in this question and then you can solve it easily.
Complete step-by-step answer:
${2^{2x + 1}} - 33 \cdot {2^{x - 1}} + 4 = 0$
Now break the terms ${2^{2x + 1}} = 2 \cdot {2^{2x}}$and ${2^{x - 1}} = \dfrac{{{2^x}}}{2}$ as we know the rule of exponents i.e.${a^m} \cdot {a^n} = {a^{m + n}}$ and \[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\].
Now we write it as,
now let the term ${2^x}$ as t.
$2{t^2} - \dfrac{{33}}{2}t + 4 = 0$ here we see that it is forming a quadratic equation.
$4{t^2} - 33t + 8 = 0$
Now we have to make it in factor form.
$4{t^2} - 32t - t + 8 = 0$
$4t\left( {t - 8} \right) - 1\left( {t - 8} \right) = 0$
$
\left( {t - 8} \right)\left( {4t - 1} \right) = 0 \\
\therefore t = 8,t = \dfrac{1}{4} \\
$
Now as we have assumed ${2^x} = t$
So, ${2^x} = 8 \Rightarrow \therefore x = 3$ or ${2^x} = \dfrac{1}{4} \Rightarrow \therefore x = - 2$
Hence x=3 and x= -2 are the required answer.
Note: For solving this type of question you have to use the concept of exponent and to solve it further consider an exponent as a variable then it may become a quadratic equation as in this question and then you can solve it easily.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

