
Solve the following algebraic equation and find the value of $x$
$x\left( {2x + 1} \right)\left( {x - 2} \right)\left( {2x - 3} \right) = 63$
Answer
606.9k+ views
Hint: For solving such types of questions, proceed with multiplying the terms in order to find some common terms and make a substitution with some common term.
Given equation is $x\left( {2x + 1} \right)\left( {x - 2} \right)\left( {2x - 3} \right) = 63$
We will try to separate some common term after multiplying the terms
$
\Rightarrow x\left( {2x + 1} \right)\left( {x - 2} \right)\left( {2x - 3} \right) = 63 \\
\Rightarrow \left\{ {x\left( {2x - 3} \right)} \right\}\left\{ {\left( {2x + 1} \right)\left( {x - 2} \right)} \right\} = 63 \\
\Rightarrow \left\{ {2{x^2} - 3x} \right\}\left\{ {2{x^2} - 4x + x - 2} \right\} = 63 \\
\Rightarrow \left\{ {2{x^2} - 3x} \right\}\left\{ {2{x^2} - 3x - 2} \right\} = 63 \\
$
Now let us substitute some common term
Let $2{x^2} - 3x = t$ -----(1)
So now the equation becomes
$ \Rightarrow t\left( {t - 2} \right) = 63$
Now solving this quadratic equation by simplifying the middle term method
$
\Rightarrow {t^2} - 2t - 63 = 0 \\
\Rightarrow {t^2} - 9t + 7t - 63 = 0 \\
\Rightarrow t\left( {t - 9} \right) + 7\left( {t - 9} \right) = 0 \\
\Rightarrow \left( {t + 7} \right)\left( {t - 9} \right) = 0 \\
$
Hence we get 2 different values of t
$t = - 7,t = 9$
Now putting the value of $t$ back in equation (1), we have
$ \Rightarrow 2{x^2} - 3x = - 7\& 2{x^2} - 3x = 9$
Taking first equation we have
$
\Rightarrow 2{x^2} - 3x = - 7 \\
\Rightarrow 2{x^2} - 3x + 7 = 0 \\
$
We know that roots of any quadratic equation of general form $a{x^2} + bx + c = 0$ are
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
So the roots of first quadratic equation are
$
\Rightarrow x = \dfrac{{ - \left( { - 3} \right) \pm \sqrt {{3^2} - 4\left( 2 \right)\left( 7 \right)} }}{{2\left( 2 \right)}} \\
\Rightarrow x = \dfrac{{3 \pm \sqrt {9 - 56} }}{4} \\
\Rightarrow x = \dfrac{{3 \pm \sqrt { - 47} }}{4} \\
$
Now taking second equation we have
$
\Rightarrow 2{x^2} - 3x = 9 \\
\Rightarrow 2{x^2} - 3x - 9 = 0 \\
\Rightarrow 2{x^2} - 6x + 3x - 9 = 0 \\
\Rightarrow 2x\left( {x - 3} \right) + 3\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {2x + 3} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = 3,x = \dfrac{{ - 3}}{2} \\
$
Hence we have 4 roots of the given equation, they are:
$x = \dfrac{{3 + \sqrt { - 47} }}{4},x = \dfrac{{3 - \sqrt { - 47} }}{4},x = 3\& x = \dfrac{{ - 3}}{2}$
Note: Since the quadratic equation is of degree 4 so it must have 4 roots. The problem became easier after substitution of terms in between for simplification. After the substitution the problem of degree 4 reduced to that of degree 2. So simplification is the key to the solution. Also this type of higher degree problem is solved by hit and trial for one root and converting the problem to lower degree.
Given equation is $x\left( {2x + 1} \right)\left( {x - 2} \right)\left( {2x - 3} \right) = 63$
We will try to separate some common term after multiplying the terms
$
\Rightarrow x\left( {2x + 1} \right)\left( {x - 2} \right)\left( {2x - 3} \right) = 63 \\
\Rightarrow \left\{ {x\left( {2x - 3} \right)} \right\}\left\{ {\left( {2x + 1} \right)\left( {x - 2} \right)} \right\} = 63 \\
\Rightarrow \left\{ {2{x^2} - 3x} \right\}\left\{ {2{x^2} - 4x + x - 2} \right\} = 63 \\
\Rightarrow \left\{ {2{x^2} - 3x} \right\}\left\{ {2{x^2} - 3x - 2} \right\} = 63 \\
$
Now let us substitute some common term
Let $2{x^2} - 3x = t$ -----(1)
So now the equation becomes
$ \Rightarrow t\left( {t - 2} \right) = 63$
Now solving this quadratic equation by simplifying the middle term method
$
\Rightarrow {t^2} - 2t - 63 = 0 \\
\Rightarrow {t^2} - 9t + 7t - 63 = 0 \\
\Rightarrow t\left( {t - 9} \right) + 7\left( {t - 9} \right) = 0 \\
\Rightarrow \left( {t + 7} \right)\left( {t - 9} \right) = 0 \\
$
Hence we get 2 different values of t
$t = - 7,t = 9$
Now putting the value of $t$ back in equation (1), we have
$ \Rightarrow 2{x^2} - 3x = - 7\& 2{x^2} - 3x = 9$
Taking first equation we have
$
\Rightarrow 2{x^2} - 3x = - 7 \\
\Rightarrow 2{x^2} - 3x + 7 = 0 \\
$
We know that roots of any quadratic equation of general form $a{x^2} + bx + c = 0$ are
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
So the roots of first quadratic equation are
$
\Rightarrow x = \dfrac{{ - \left( { - 3} \right) \pm \sqrt {{3^2} - 4\left( 2 \right)\left( 7 \right)} }}{{2\left( 2 \right)}} \\
\Rightarrow x = \dfrac{{3 \pm \sqrt {9 - 56} }}{4} \\
\Rightarrow x = \dfrac{{3 \pm \sqrt { - 47} }}{4} \\
$
Now taking second equation we have
$
\Rightarrow 2{x^2} - 3x = 9 \\
\Rightarrow 2{x^2} - 3x - 9 = 0 \\
\Rightarrow 2{x^2} - 6x + 3x - 9 = 0 \\
\Rightarrow 2x\left( {x - 3} \right) + 3\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {2x + 3} \right)\left( {x - 3} \right) = 0 \\
\Rightarrow x = 3,x = \dfrac{{ - 3}}{2} \\
$
Hence we have 4 roots of the given equation, they are:
$x = \dfrac{{3 + \sqrt { - 47} }}{4},x = \dfrac{{3 - \sqrt { - 47} }}{4},x = 3\& x = \dfrac{{ - 3}}{2}$
Note: Since the quadratic equation is of degree 4 so it must have 4 roots. The problem became easier after substitution of terms in between for simplification. After the substitution the problem of degree 4 reduced to that of degree 2. So simplification is the key to the solution. Also this type of higher degree problem is solved by hit and trial for one root and converting the problem to lower degree.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

