
Solve the equation and find its value: $\dfrac{{{\text{sin30 + tan45 - cosec60}}}}{{{\text{sec30 + cos60 + cot45}}}}$.
Answer
606.3k+ views
Hint: In order to solve this question, you have to put the value of the trigonometric ratios for the particular angles provided in the question and simplify it to get the correct answer.
Complete step-by-step answer:
The given equation is $\dfrac{{{\text{sin30 + tan45 - cosec60}}}}{{{\text{sec30 + cos60 + cot45}}}}$
As we know sin30 = $\dfrac{1}{2}$, tan45 = $1$, cosec60 = $\dfrac{2}{{\sqrt 3 }}$, sec30 = $\dfrac{2}{{\sqrt 3 }}$, cos60 = $\dfrac{1}{2}$ and cot45 = 1.
On putting the value of the angles in the given equation we get the equation as :
$\dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{1}{2} + \dfrac{2}{{\sqrt 3 }} + 1}} = \dfrac{{\dfrac{3}{2} - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{3}{2} + \dfrac{2}{{\sqrt 3 }}}}$
On solving it further we get,
$\dfrac{{\dfrac{3}{2} - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{3}{2} + \dfrac{2}{{\sqrt 3 }}}} = \dfrac{{\dfrac{{3\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{{3\sqrt 3 + 4}}{{2\sqrt 3 }}}} = \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}$
We can more simplify it after rationalizing it,
$\dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}{\text{x}}\dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 - 4}} = \dfrac{{{{(3\sqrt 3 - 4)}^2}}}{{{{(3\sqrt 3 )}^2} - {{(4)}^2}}} = \dfrac{{27 + 16 - 24\sqrt 3 }}{{27 - 16}} = \dfrac{{43 - 24\sqrt 3 }}{{11}}$
(since $(a + b)(a + b) = {(a + b)^2} = {a^2} + {b^2} + 2ab\, and \,(a + b)(a - b) = {a^2} - {b^2}$)
So the correct answer is $\dfrac{{43 - 24\sqrt 3 }}{{11}}$.
Note – Whenever you face such types of problems where the general angles are given directly, put the values of those trigonometric ratios for that particular angle and simplify it further to get the right answer. After solving, we have to do rationalization for removing the square root from the denominator and making the solution more clear. Proceeding like this will take you to the right solution.
Complete step-by-step answer:
The given equation is $\dfrac{{{\text{sin30 + tan45 - cosec60}}}}{{{\text{sec30 + cos60 + cot45}}}}$
As we know sin30 = $\dfrac{1}{2}$, tan45 = $1$, cosec60 = $\dfrac{2}{{\sqrt 3 }}$, sec30 = $\dfrac{2}{{\sqrt 3 }}$, cos60 = $\dfrac{1}{2}$ and cot45 = 1.
On putting the value of the angles in the given equation we get the equation as :
$\dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{1}{2} + \dfrac{2}{{\sqrt 3 }} + 1}} = \dfrac{{\dfrac{3}{2} - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{3}{2} + \dfrac{2}{{\sqrt 3 }}}}$
On solving it further we get,
$\dfrac{{\dfrac{3}{2} - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{3}{2} + \dfrac{2}{{\sqrt 3 }}}} = \dfrac{{\dfrac{{3\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{{3\sqrt 3 + 4}}{{2\sqrt 3 }}}} = \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}$
We can more simplify it after rationalizing it,
$\dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}{\text{x}}\dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 - 4}} = \dfrac{{{{(3\sqrt 3 - 4)}^2}}}{{{{(3\sqrt 3 )}^2} - {{(4)}^2}}} = \dfrac{{27 + 16 - 24\sqrt 3 }}{{27 - 16}} = \dfrac{{43 - 24\sqrt 3 }}{{11}}$
(since $(a + b)(a + b) = {(a + b)^2} = {a^2} + {b^2} + 2ab\, and \,(a + b)(a - b) = {a^2} - {b^2}$)
So the correct answer is $\dfrac{{43 - 24\sqrt 3 }}{{11}}$.
Note – Whenever you face such types of problems where the general angles are given directly, put the values of those trigonometric ratios for that particular angle and simplify it further to get the right answer. After solving, we have to do rationalization for removing the square root from the denominator and making the solution more clear. Proceeding like this will take you to the right solution.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

