
Solve the equation and calculate the value of x
$\dfrac{{4x}}{{x - 2}} - \dfrac{{3x}}{{x - 1}} = 7\dfrac{1}{2}$
$
A. {\text{ }}x = 0,\dfrac{{10}}{{13}} \\
B. {\text{ }}x = 3,\dfrac{{10}}{{13}} \\
C. {\text{ }}x = 3, - \dfrac{1}{{13}} \\
D. {\text{ None of these}} \\
$
Answer
621k+ views
Hint: In this question first simplify the L.H.S part of the equation and later on apply the property of cross multiplication, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation is
$\dfrac{{4x}}{{x - 2}} - \dfrac{{3x}}{{x - 1}} = 7\dfrac{1}{2}$
As we know $7\dfrac{1}{2}$is also written as $\dfrac{{\left( {7 \times 2} \right) + 1}}{2} = \dfrac{{15}}{2}$, substitute this value in above equation we have,
$\dfrac{{4x}}{{x - 2}} - \dfrac{{3x}}{{x - 1}} = \dfrac{{15}}{2}$
Now take L.C.M of the above equation we have,
$\dfrac{{4x\left( {x - 1} \right) - 3x\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x - 1} \right)}} = \dfrac{{15}}{2}$
Now simplify the numerator and denominator of the L.H.S we have
$ \Rightarrow \dfrac{{4{x^2} - 4x - 3{x^2} + 6x}}{{{x^2} - x - 2x + 2}} = \dfrac{{15}}{2}$
$ \Rightarrow \dfrac{{{x^2} + 2x}}{{{x^2} - 3x + 2}} = \dfrac{{15}}{2}$
Now apply cross multiply we have
$ \Rightarrow 2\left( {{x^2} + 2x} \right) = 15\left( {{x^2} - 3x + 2} \right)$
Now simplify the above equation we have,
$
\Rightarrow 2{x^2} + 4x = 15{x^2} - 45x + 30 \\
\Rightarrow 15{x^2} - 2{x^2} - 45x - 4x + 30 = 0 \\
\Rightarrow 13{x^2} - 49x + 30 = 0 \\
$
Now divide by 13 in the above equation we have,
$ \Rightarrow {x^2} - \dfrac{{49}}{{13}}x + \dfrac{{30}}{{13}} = 0$
Now factorize the above equation we have,
$ \Rightarrow {x^2} - 3x - \dfrac{{10}}{{13}}x + \dfrac{{30}}{{13}} = 0$
$
\Rightarrow x\left( {x - 3} \right) - \dfrac{{10}}{{13}}\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {x - \dfrac{{10}}{{13}}} \right) = 0 \\
\Rightarrow \left( {x - 3} \right) = 0,{\text{ }}\left( {x - \dfrac{{10}}{{13}}} \right) = 0 \\
\Rightarrow x = 3,{\text{ }}\dfrac{{10}}{{13}} \\
$
So, this is the required solution of the question.
Hence, option (b) is correct.
Note: In such types of questions simplification is the key, so simplify the above equation as above doing simplification don’t make unnecessary mistakes it will lead us to wrong answer so be careful while doing addition, subtraction, division and multiplication then apply cross multiply and again simplify then factorize the equation we will get the required solution of the x.
Complete step-by-step answer:
Given equation is
$\dfrac{{4x}}{{x - 2}} - \dfrac{{3x}}{{x - 1}} = 7\dfrac{1}{2}$
As we know $7\dfrac{1}{2}$is also written as $\dfrac{{\left( {7 \times 2} \right) + 1}}{2} = \dfrac{{15}}{2}$, substitute this value in above equation we have,
$\dfrac{{4x}}{{x - 2}} - \dfrac{{3x}}{{x - 1}} = \dfrac{{15}}{2}$
Now take L.C.M of the above equation we have,
$\dfrac{{4x\left( {x - 1} \right) - 3x\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x - 1} \right)}} = \dfrac{{15}}{2}$
Now simplify the numerator and denominator of the L.H.S we have
$ \Rightarrow \dfrac{{4{x^2} - 4x - 3{x^2} + 6x}}{{{x^2} - x - 2x + 2}} = \dfrac{{15}}{2}$
$ \Rightarrow \dfrac{{{x^2} + 2x}}{{{x^2} - 3x + 2}} = \dfrac{{15}}{2}$
Now apply cross multiply we have
$ \Rightarrow 2\left( {{x^2} + 2x} \right) = 15\left( {{x^2} - 3x + 2} \right)$
Now simplify the above equation we have,
$
\Rightarrow 2{x^2} + 4x = 15{x^2} - 45x + 30 \\
\Rightarrow 15{x^2} - 2{x^2} - 45x - 4x + 30 = 0 \\
\Rightarrow 13{x^2} - 49x + 30 = 0 \\
$
Now divide by 13 in the above equation we have,
$ \Rightarrow {x^2} - \dfrac{{49}}{{13}}x + \dfrac{{30}}{{13}} = 0$
Now factorize the above equation we have,
$ \Rightarrow {x^2} - 3x - \dfrac{{10}}{{13}}x + \dfrac{{30}}{{13}} = 0$
$
\Rightarrow x\left( {x - 3} \right) - \dfrac{{10}}{{13}}\left( {x - 3} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {x - \dfrac{{10}}{{13}}} \right) = 0 \\
\Rightarrow \left( {x - 3} \right) = 0,{\text{ }}\left( {x - \dfrac{{10}}{{13}}} \right) = 0 \\
\Rightarrow x = 3,{\text{ }}\dfrac{{10}}{{13}} \\
$
So, this is the required solution of the question.
Hence, option (b) is correct.
Note: In such types of questions simplification is the key, so simplify the above equation as above doing simplification don’t make unnecessary mistakes it will lead us to wrong answer so be careful while doing addition, subtraction, division and multiplication then apply cross multiply and again simplify then factorize the equation we will get the required solution of the x.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

