Answer

Verified

423.6k+ views

Hint: Here we have an equation with two variables. To find out the solution try to establish a relation between the variables and check the options one by one.

Complete step-by-step answer:

Let us first take the given equation:

$7x+12y=220...........(1)$

Now look at the equation very carefully, there are two variables. Variable is basically a symbol for a number we don’t know yet or we can say unknown. Here $x,y$ are unknowns to us. We have to find out some specific integer values for $x,y$.

Generally for two variables if we have two equations we get a unique solution. Here we have only one equation but two variables. So basically if we put any integer value for one variable then we will get a value for another variable.

Now, let us find out the relation between $x$ and $y$ .

The equation is:

$7x+12y=220$

Take $12y$ from left side to right side:

$\Rightarrow 7x=220-12y$

Divide both the sides by 7:

$\Rightarrow \dfrac{7x}{7}=\dfrac{220-12y}{7}$

$\Rightarrow x=\dfrac{220-12y}{7}......(2)$

If we put any value for $y$ we will always get a value of $x$ .

Here we have four options. So, we will put the values of y from the options one by one and we will check if the value of $x$ is correct or not.

Our first option is $\left( 2,24 \right)$ . So here $y=24$

Let us put the value of y in equation (2)

$\begin{align}

& x=\dfrac{220-\left( 12\times 24 \right)}{7} \\

& \Rightarrow x=\dfrac{220-288}{7} \\

& \Rightarrow x=\dfrac{-8}{7} \\

\end{align}$

So for $y=24$ , $x\ne 2$ . Hence option (a) is not correct.

Our second option is $\left( 28,2 \right)$ . So here $y=2$

Let us put the value of y in equation (2)

$\begin{align}

& x=\dfrac{220-\left( 12\times 2 \right)}{7} \\

& \Rightarrow x=\dfrac{220-24}{7} \\

& \Rightarrow x=\dfrac{196}{7}=28 \\

\end{align}$

So for $y=2$ , $x=28$ . Hence option (b) is correct.

Our third option is $\left( 32,3 \right)$ . So here $y=3$

Let us put the value of y in equation (2)

$\begin{align}

& x=\dfrac{220-\left( 12\times 3 \right)}{7} \\

& \Rightarrow x=\dfrac{220-36}{7} \\

& \Rightarrow x=\dfrac{184}{7}=26\dfrac{2}{7} \\

\end{align}$

So for $y=3$ , $x\ne 32$ . Hence option (c) is not correct.

Our fourth option is $\left( 2,34 \right)$ . So here $y=34$

Let us put the value of y in equation (2)

$\begin{align}

& x=\dfrac{220-\left( 12\times 34 \right)}{7} \\

& \Rightarrow x=\dfrac{220-408}{7} \\

& \Rightarrow x=\dfrac{-188}{7} \\

\end{align}$

So for $y=34$ , $x\ne 2$ . Hence option (d) is not correct.

Therefore, option (b) is the correct answer.

Note: We can also directly put the values from the options in the left hand side of the equation:

$7x+12y=220$ , and check if it is coming 220 or not.

Like if we substitute $\left( 28,2 \right)$ in the left hand side we will get:

$=\left( 7\times 28 \right)+\left( 12\times 2 \right)=196+24=220$

Hence, option (b) is correct.

Complete step-by-step answer:

Let us first take the given equation:

$7x+12y=220...........(1)$

Now look at the equation very carefully, there are two variables. Variable is basically a symbol for a number we don’t know yet or we can say unknown. Here $x,y$ are unknowns to us. We have to find out some specific integer values for $x,y$.

Generally for two variables if we have two equations we get a unique solution. Here we have only one equation but two variables. So basically if we put any integer value for one variable then we will get a value for another variable.

Now, let us find out the relation between $x$ and $y$ .

The equation is:

$7x+12y=220$

Take $12y$ from left side to right side:

$\Rightarrow 7x=220-12y$

Divide both the sides by 7:

$\Rightarrow \dfrac{7x}{7}=\dfrac{220-12y}{7}$

$\Rightarrow x=\dfrac{220-12y}{7}......(2)$

If we put any value for $y$ we will always get a value of $x$ .

Here we have four options. So, we will put the values of y from the options one by one and we will check if the value of $x$ is correct or not.

Our first option is $\left( 2,24 \right)$ . So here $y=24$

Let us put the value of y in equation (2)

$\begin{align}

& x=\dfrac{220-\left( 12\times 24 \right)}{7} \\

& \Rightarrow x=\dfrac{220-288}{7} \\

& \Rightarrow x=\dfrac{-8}{7} \\

\end{align}$

So for $y=24$ , $x\ne 2$ . Hence option (a) is not correct.

Our second option is $\left( 28,2 \right)$ . So here $y=2$

Let us put the value of y in equation (2)

$\begin{align}

& x=\dfrac{220-\left( 12\times 2 \right)}{7} \\

& \Rightarrow x=\dfrac{220-24}{7} \\

& \Rightarrow x=\dfrac{196}{7}=28 \\

\end{align}$

So for $y=2$ , $x=28$ . Hence option (b) is correct.

Our third option is $\left( 32,3 \right)$ . So here $y=3$

Let us put the value of y in equation (2)

$\begin{align}

& x=\dfrac{220-\left( 12\times 3 \right)}{7} \\

& \Rightarrow x=\dfrac{220-36}{7} \\

& \Rightarrow x=\dfrac{184}{7}=26\dfrac{2}{7} \\

\end{align}$

So for $y=3$ , $x\ne 32$ . Hence option (c) is not correct.

Our fourth option is $\left( 2,34 \right)$ . So here $y=34$

Let us put the value of y in equation (2)

$\begin{align}

& x=\dfrac{220-\left( 12\times 34 \right)}{7} \\

& \Rightarrow x=\dfrac{220-408}{7} \\

& \Rightarrow x=\dfrac{-188}{7} \\

\end{align}$

So for $y=34$ , $x\ne 2$ . Hence option (d) is not correct.

Therefore, option (b) is the correct answer.

Note: We can also directly put the values from the options in the left hand side of the equation:

$7x+12y=220$ , and check if it is coming 220 or not.

Like if we substitute $\left( 28,2 \right)$ in the left hand side we will get:

$=\left( 7\times 28 \right)+\left( 12\times 2 \right)=196+24=220$

Hence, option (b) is correct.

Recently Updated Pages

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

The branch of science which deals with nature and natural class 10 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The cell wall of prokaryotes are made up of a Cellulose class 9 biology CBSE

What organs are located on the left side of your body class 11 biology CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE