
How do you solve the equation $4{x^2} = 20x - 25$by completing the square?
Answer
540.9k+ views
Hint: Completing the square is the method which represents the quadratic equation as the combination of the quadrilateral used to form the square and it is the basis of the method discovers the special value which when added to both the sides of the quadratic which creates the perfect square trinomial. Here we will take the given expression and check for the perfect square or the value to be added. It becomes very easy to form the complete square if the given expression itself is the perfect square.
Complete step-by-step solution:
Take the given expression: $4{x^2} = 20x - 25$
Move all the terms from the right hand side of the equation to the left hand side of the equation. Remember when you move any term from one side to another, then the sign of the term also changes. Positive terms become negative and the negative term becomes positive.
$4{x^2} - 20x + 25 = 0$
The above equation can be re-written as: ${(2x)^2} - 2(2x)(5) + {(5)^2} = 0$
The above equation can be framed in the form of ${a^2} - 2ab + {b^2} = {(a - b)^2}$
${(2x - 5)^2} = 0$
Take the square root on both sides of the equation.
$\sqrt {{{(2x - 5)}^2}} = 0$
Square and square root cancel each other on the left hand side of the equation.
$ \Rightarrow 2x - 5 = 0$
Make “x” the subject and move constants on the right hand side of the equation.
$ \Rightarrow 2x = 5$
Term multiplicative on one side if moved to the opposite side then it goes to the denominator.
$ \Rightarrow x = \frac{5}{2}$
This is the required solution.
Note: Be careful about the sign convention and remember when you move any term from one side to another then the sign of the term also changes. Positive term becomes the negative and the negative term becomes positive.
Complete step-by-step solution:
Take the given expression: $4{x^2} = 20x - 25$
Move all the terms from the right hand side of the equation to the left hand side of the equation. Remember when you move any term from one side to another, then the sign of the term also changes. Positive terms become negative and the negative term becomes positive.
$4{x^2} - 20x + 25 = 0$
The above equation can be re-written as: ${(2x)^2} - 2(2x)(5) + {(5)^2} = 0$
The above equation can be framed in the form of ${a^2} - 2ab + {b^2} = {(a - b)^2}$
${(2x - 5)^2} = 0$
Take the square root on both sides of the equation.
$\sqrt {{{(2x - 5)}^2}} = 0$
Square and square root cancel each other on the left hand side of the equation.
$ \Rightarrow 2x - 5 = 0$
Make “x” the subject and move constants on the right hand side of the equation.
$ \Rightarrow 2x = 5$
Term multiplicative on one side if moved to the opposite side then it goes to the denominator.
$ \Rightarrow x = \frac{5}{2}$
This is the required solution.
Note: Be careful about the sign convention and remember when you move any term from one side to another then the sign of the term also changes. Positive term becomes the negative and the negative term becomes positive.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

