
Solve the equation: $2{x^4} + {x^3} - 6{x^2} + x + 2 = 0$
Answer
623.1k+ views
Hint- Here, we will be proceeding by diving the given equation by ${x^2}$ in order to convert this equation of degree four into a quadratic equation.
Given equation is $2{x^4} + {x^3} - 6{x^2} + x + 2 = 0$
Now let us the divide both sides by ${x^2}$, we get
$
\Rightarrow \dfrac{{2{x^4}}}{{{x^2}}} + \dfrac{{{x^3}}}{{{x^2}}} - \dfrac{{6{x^2}}}{{{x^2}}} + \dfrac{x}{{{x^2}}} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + x - 6 + \dfrac{1}{x} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + \dfrac{2}{{{x^2}}} + x + \dfrac{1}{x} - 6 = 0 \\
\Rightarrow 2\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
$
Now, proceeding further by using method of completing the square
\[
\Rightarrow 2\left[ {\left( {{x^2} + \dfrac{1}{{{x^2}}} + 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right) - 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \Rightarrow 2\left[ {{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} - 4 + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} + \left( {x + \dfrac{1}{x}} \right) - 10 = 0 \\
\]
Put \[\left( {x + \dfrac{1}{x}} \right) = t\] in the above equation, we get
\[
2{t^2} + t - 10 = 0 \Rightarrow 2{t^2} - 4t + 5t - 10 = 0 \Rightarrow 2t\left( {t - 2} \right) + 5\left( {t - 2} \right) = 0 \Rightarrow \left( {t - 2} \right)\left( {2t + 5} \right) = 0 \\
\\
\]
Either $t = 2$ or $t = - \dfrac{5}{2}$
For $t = 2$ $ \Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = 2 \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = 2 \Rightarrow {x^2} + 1 = 2x \Rightarrow {x^2} - 2x + 1 = 0 \Rightarrow {\left( {x - 1} \right)^2} = 0 \Rightarrow x = 1$
Corresponding to $t = 2$, there exists two equal roots $x = 1$ of the given equation.
For $t = - \dfrac{5}{2}$ $
\Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = - \dfrac{5}{2} \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = - \dfrac{5}{2} \Rightarrow 2\left( {{x^2} + 1} \right) = - 5x \Rightarrow 2{x^2} + 5x + 2 = 0 \Rightarrow 2{x^2} + 4x + x + 2 = 0 \\
\Rightarrow 2x\left( {x + 2} \right) + 1\left( {x + 2} \right) = 0 \Rightarrow \left( {x + 2} \right)\left( {2x + 1} \right) = 0 \\
$
Either $ \Rightarrow x = - 2$ or $x = - \dfrac{1}{2}$
Corresponding to $t = - \dfrac{5}{2}$, there exists two roots of the given equation which are $x = - 2$, $x = - \dfrac{1}{2}$.
Therefore, all the four roots of the given equation are $x = 1,1, - 2, - \dfrac{1}{2}$.
Note- The given equation consists of a polynomial of degree four so ultimately it will be resulting in a total four roots for the given equation.
Given equation is $2{x^4} + {x^3} - 6{x^2} + x + 2 = 0$
Now let us the divide both sides by ${x^2}$, we get
$
\Rightarrow \dfrac{{2{x^4}}}{{{x^2}}} + \dfrac{{{x^3}}}{{{x^2}}} - \dfrac{{6{x^2}}}{{{x^2}}} + \dfrac{x}{{{x^2}}} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + x - 6 + \dfrac{1}{x} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + \dfrac{2}{{{x^2}}} + x + \dfrac{1}{x} - 6 = 0 \\
\Rightarrow 2\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
$
Now, proceeding further by using method of completing the square
\[
\Rightarrow 2\left[ {\left( {{x^2} + \dfrac{1}{{{x^2}}} + 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right) - 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \Rightarrow 2\left[ {{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} - 4 + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} + \left( {x + \dfrac{1}{x}} \right) - 10 = 0 \\
\]
Put \[\left( {x + \dfrac{1}{x}} \right) = t\] in the above equation, we get
\[
2{t^2} + t - 10 = 0 \Rightarrow 2{t^2} - 4t + 5t - 10 = 0 \Rightarrow 2t\left( {t - 2} \right) + 5\left( {t - 2} \right) = 0 \Rightarrow \left( {t - 2} \right)\left( {2t + 5} \right) = 0 \\
\\
\]
Either $t = 2$ or $t = - \dfrac{5}{2}$
For $t = 2$ $ \Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = 2 \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = 2 \Rightarrow {x^2} + 1 = 2x \Rightarrow {x^2} - 2x + 1 = 0 \Rightarrow {\left( {x - 1} \right)^2} = 0 \Rightarrow x = 1$
Corresponding to $t = 2$, there exists two equal roots $x = 1$ of the given equation.
For $t = - \dfrac{5}{2}$ $
\Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = - \dfrac{5}{2} \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = - \dfrac{5}{2} \Rightarrow 2\left( {{x^2} + 1} \right) = - 5x \Rightarrow 2{x^2} + 5x + 2 = 0 \Rightarrow 2{x^2} + 4x + x + 2 = 0 \\
\Rightarrow 2x\left( {x + 2} \right) + 1\left( {x + 2} \right) = 0 \Rightarrow \left( {x + 2} \right)\left( {2x + 1} \right) = 0 \\
$
Either $ \Rightarrow x = - 2$ or $x = - \dfrac{1}{2}$
Corresponding to $t = - \dfrac{5}{2}$, there exists two roots of the given equation which are $x = - 2$, $x = - \dfrac{1}{2}$.
Therefore, all the four roots of the given equation are $x = 1,1, - 2, - \dfrac{1}{2}$.
Note- The given equation consists of a polynomial of degree four so ultimately it will be resulting in a total four roots for the given equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

