Solve the equation: $2{x^4} + {x^3} - 6{x^2} + x + 2 = 0$
Answer
329.1k+ views
Hint- Here, we will be proceeding by diving the given equation by ${x^2}$ in order to convert this equation of degree four into a quadratic equation.
Given equation is $2{x^4} + {x^3} - 6{x^2} + x + 2 = 0$
Now let us the divide both sides by ${x^2}$, we get
$
\Rightarrow \dfrac{{2{x^4}}}{{{x^2}}} + \dfrac{{{x^3}}}{{{x^2}}} - \dfrac{{6{x^2}}}{{{x^2}}} + \dfrac{x}{{{x^2}}} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + x - 6 + \dfrac{1}{x} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + \dfrac{2}{{{x^2}}} + x + \dfrac{1}{x} - 6 = 0 \\
\Rightarrow 2\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
$
Now, proceeding further by using method of completing the square
\[
\Rightarrow 2\left[ {\left( {{x^2} + \dfrac{1}{{{x^2}}} + 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right) - 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \Rightarrow 2\left[ {{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} - 4 + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} + \left( {x + \dfrac{1}{x}} \right) - 10 = 0 \\
\]
Put \[\left( {x + \dfrac{1}{x}} \right) = t\] in the above equation, we get
\[
2{t^2} + t - 10 = 0 \Rightarrow 2{t^2} - 4t + 5t - 10 = 0 \Rightarrow 2t\left( {t - 2} \right) + 5\left( {t - 2} \right) = 0 \Rightarrow \left( {t - 2} \right)\left( {2t + 5} \right) = 0 \\
\\
\]
Either $t = 2$ or $t = - \dfrac{5}{2}$
For $t = 2$ $ \Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = 2 \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = 2 \Rightarrow {x^2} + 1 = 2x \Rightarrow {x^2} - 2x + 1 = 0 \Rightarrow {\left( {x - 1} \right)^2} = 0 \Rightarrow x = 1$
Corresponding to $t = 2$, there exists two equal roots $x = 1$ of the given equation.
For $t = - \dfrac{5}{2}$ $
\Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = - \dfrac{5}{2} \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = - \dfrac{5}{2} \Rightarrow 2\left( {{x^2} + 1} \right) = - 5x \Rightarrow 2{x^2} + 5x + 2 = 0 \Rightarrow 2{x^2} + 4x + x + 2 = 0 \\
\Rightarrow 2x\left( {x + 2} \right) + 1\left( {x + 2} \right) = 0 \Rightarrow \left( {x + 2} \right)\left( {2x + 1} \right) = 0 \\
$
Either $ \Rightarrow x = - 2$ or $x = - \dfrac{1}{2}$
Corresponding to $t = - \dfrac{5}{2}$, there exists two roots of the given equation which are $x = - 2$, $x = - \dfrac{1}{2}$.
Therefore, all the four roots of the given equation are $x = 1,1, - 2, - \dfrac{1}{2}$.
Note- The given equation consists of a polynomial of degree four so ultimately it will be resulting in a total four roots for the given equation.
Given equation is $2{x^4} + {x^3} - 6{x^2} + x + 2 = 0$
Now let us the divide both sides by ${x^2}$, we get
$
\Rightarrow \dfrac{{2{x^4}}}{{{x^2}}} + \dfrac{{{x^3}}}{{{x^2}}} - \dfrac{{6{x^2}}}{{{x^2}}} + \dfrac{x}{{{x^2}}} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + x - 6 + \dfrac{1}{x} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + \dfrac{2}{{{x^2}}} + x + \dfrac{1}{x} - 6 = 0 \\
\Rightarrow 2\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
$
Now, proceeding further by using method of completing the square
\[
\Rightarrow 2\left[ {\left( {{x^2} + \dfrac{1}{{{x^2}}} + 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right) - 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \Rightarrow 2\left[ {{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} - 4 + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} + \left( {x + \dfrac{1}{x}} \right) - 10 = 0 \\
\]
Put \[\left( {x + \dfrac{1}{x}} \right) = t\] in the above equation, we get
\[
2{t^2} + t - 10 = 0 \Rightarrow 2{t^2} - 4t + 5t - 10 = 0 \Rightarrow 2t\left( {t - 2} \right) + 5\left( {t - 2} \right) = 0 \Rightarrow \left( {t - 2} \right)\left( {2t + 5} \right) = 0 \\
\\
\]
Either $t = 2$ or $t = - \dfrac{5}{2}$
For $t = 2$ $ \Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = 2 \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = 2 \Rightarrow {x^2} + 1 = 2x \Rightarrow {x^2} - 2x + 1 = 0 \Rightarrow {\left( {x - 1} \right)^2} = 0 \Rightarrow x = 1$
Corresponding to $t = 2$, there exists two equal roots $x = 1$ of the given equation.
For $t = - \dfrac{5}{2}$ $
\Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = - \dfrac{5}{2} \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = - \dfrac{5}{2} \Rightarrow 2\left( {{x^2} + 1} \right) = - 5x \Rightarrow 2{x^2} + 5x + 2 = 0 \Rightarrow 2{x^2} + 4x + x + 2 = 0 \\
\Rightarrow 2x\left( {x + 2} \right) + 1\left( {x + 2} \right) = 0 \Rightarrow \left( {x + 2} \right)\left( {2x + 1} \right) = 0 \\
$
Either $ \Rightarrow x = - 2$ or $x = - \dfrac{1}{2}$
Corresponding to $t = - \dfrac{5}{2}$, there exists two roots of the given equation which are $x = - 2$, $x = - \dfrac{1}{2}$.
Therefore, all the four roots of the given equation are $x = 1,1, - 2, - \dfrac{1}{2}$.
Note- The given equation consists of a polynomial of degree four so ultimately it will be resulting in a total four roots for the given equation.
Last updated date: 28th May 2023
•
Total views: 329.1k
•
Views today: 7.87k
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
