Answer
Verified
468.6k+ views
Hint- Here, we will be proceeding by diving the given equation by ${x^2}$ in order to convert this equation of degree four into a quadratic equation.
Given equation is $2{x^4} + {x^3} - 6{x^2} + x + 2 = 0$
Now let us the divide both sides by ${x^2}$, we get
$
\Rightarrow \dfrac{{2{x^4}}}{{{x^2}}} + \dfrac{{{x^3}}}{{{x^2}}} - \dfrac{{6{x^2}}}{{{x^2}}} + \dfrac{x}{{{x^2}}} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + x - 6 + \dfrac{1}{x} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + \dfrac{2}{{{x^2}}} + x + \dfrac{1}{x} - 6 = 0 \\
\Rightarrow 2\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
$
Now, proceeding further by using method of completing the square
\[
\Rightarrow 2\left[ {\left( {{x^2} + \dfrac{1}{{{x^2}}} + 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right) - 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \Rightarrow 2\left[ {{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} - 4 + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} + \left( {x + \dfrac{1}{x}} \right) - 10 = 0 \\
\]
Put \[\left( {x + \dfrac{1}{x}} \right) = t\] in the above equation, we get
\[
2{t^2} + t - 10 = 0 \Rightarrow 2{t^2} - 4t + 5t - 10 = 0 \Rightarrow 2t\left( {t - 2} \right) + 5\left( {t - 2} \right) = 0 \Rightarrow \left( {t - 2} \right)\left( {2t + 5} \right) = 0 \\
\\
\]
Either $t = 2$ or $t = - \dfrac{5}{2}$
For $t = 2$ $ \Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = 2 \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = 2 \Rightarrow {x^2} + 1 = 2x \Rightarrow {x^2} - 2x + 1 = 0 \Rightarrow {\left( {x - 1} \right)^2} = 0 \Rightarrow x = 1$
Corresponding to $t = 2$, there exists two equal roots $x = 1$ of the given equation.
For $t = - \dfrac{5}{2}$ $
\Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = - \dfrac{5}{2} \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = - \dfrac{5}{2} \Rightarrow 2\left( {{x^2} + 1} \right) = - 5x \Rightarrow 2{x^2} + 5x + 2 = 0 \Rightarrow 2{x^2} + 4x + x + 2 = 0 \\
\Rightarrow 2x\left( {x + 2} \right) + 1\left( {x + 2} \right) = 0 \Rightarrow \left( {x + 2} \right)\left( {2x + 1} \right) = 0 \\
$
Either $ \Rightarrow x = - 2$ or $x = - \dfrac{1}{2}$
Corresponding to $t = - \dfrac{5}{2}$, there exists two roots of the given equation which are $x = - 2$, $x = - \dfrac{1}{2}$.
Therefore, all the four roots of the given equation are $x = 1,1, - 2, - \dfrac{1}{2}$.
Note- The given equation consists of a polynomial of degree four so ultimately it will be resulting in a total four roots for the given equation.
Given equation is $2{x^4} + {x^3} - 6{x^2} + x + 2 = 0$
Now let us the divide both sides by ${x^2}$, we get
$
\Rightarrow \dfrac{{2{x^4}}}{{{x^2}}} + \dfrac{{{x^3}}}{{{x^2}}} - \dfrac{{6{x^2}}}{{{x^2}}} + \dfrac{x}{{{x^2}}} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + x - 6 + \dfrac{1}{x} + \dfrac{2}{{{x^2}}} = 0 \Rightarrow 2{x^2} + \dfrac{2}{{{x^2}}} + x + \dfrac{1}{x} - 6 = 0 \\
\Rightarrow 2\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
$
Now, proceeding further by using method of completing the square
\[
\Rightarrow 2\left[ {\left( {{x^2} + \dfrac{1}{{{x^2}}} + 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right) - 2\left( {{x^2}} \right)\left( {\dfrac{1}{{{x^2}}}} \right)} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \Rightarrow 2\left[ {{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2} \right] + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} - 4 + \left( {x + \dfrac{1}{x}} \right) - 6 = 0 \\
\Rightarrow 2{\left( {x + \dfrac{1}{x}} \right)^2} + \left( {x + \dfrac{1}{x}} \right) - 10 = 0 \\
\]
Put \[\left( {x + \dfrac{1}{x}} \right) = t\] in the above equation, we get
\[
2{t^2} + t - 10 = 0 \Rightarrow 2{t^2} - 4t + 5t - 10 = 0 \Rightarrow 2t\left( {t - 2} \right) + 5\left( {t - 2} \right) = 0 \Rightarrow \left( {t - 2} \right)\left( {2t + 5} \right) = 0 \\
\\
\]
Either $t = 2$ or $t = - \dfrac{5}{2}$
For $t = 2$ $ \Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = 2 \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = 2 \Rightarrow {x^2} + 1 = 2x \Rightarrow {x^2} - 2x + 1 = 0 \Rightarrow {\left( {x - 1} \right)^2} = 0 \Rightarrow x = 1$
Corresponding to $t = 2$, there exists two equal roots $x = 1$ of the given equation.
For $t = - \dfrac{5}{2}$ $
\Rightarrow \left( {x + \dfrac{1}{x}} \right) = t = - \dfrac{5}{2} \Rightarrow \left( {\dfrac{{{x^2} + 1}}{x}} \right) = - \dfrac{5}{2} \Rightarrow 2\left( {{x^2} + 1} \right) = - 5x \Rightarrow 2{x^2} + 5x + 2 = 0 \Rightarrow 2{x^2} + 4x + x + 2 = 0 \\
\Rightarrow 2x\left( {x + 2} \right) + 1\left( {x + 2} \right) = 0 \Rightarrow \left( {x + 2} \right)\left( {2x + 1} \right) = 0 \\
$
Either $ \Rightarrow x = - 2$ or $x = - \dfrac{1}{2}$
Corresponding to $t = - \dfrac{5}{2}$, there exists two roots of the given equation which are $x = - 2$, $x = - \dfrac{1}{2}$.
Therefore, all the four roots of the given equation are $x = 1,1, - 2, - \dfrac{1}{2}$.
Note- The given equation consists of a polynomial of degree four so ultimately it will be resulting in a total four roots for the given equation.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE