Answer
Verified
492.6k+ views
Hint: Use logarithmic properties.
${a^{{{\log }_a}x}} = x$
$\log {m^n} = n\log m$
$\log x{\text{ is real }}\forall x > 0$
We have given the equation $2{\log _3}x + {\log _3}({x^2} - 3) = {\log _3}0.5 + {5^{{{\log }_5}({{\log }_3}8)}}$ which can be written as ${\log _3}{x^2} + {\log _3}({x^2} - 3) = {\log _3}0.5 + {\log _3}8$ and on further solving we’ll get $2{\log _3}x + {\log _3}({x^2} - 3) = {\log _3}0.5 + {\log _3}4$ . This equation is equivalent to the system
\[
\left\{ {\begin{array}{*{20}{c}}
{{x^2} > 0} \\
{{x^2} - 3 > 0} \\
{{x^2}({x^2} - 3) = 4}
\end{array}} \right. \\
\Rightarrow \left\{ {\begin{array}{*{20}{c}}
{x < 0{\text{ and }}x > 0{\text{ }}} \\
{x < \sqrt 3 {\text{ and x}} > \sqrt 3 } \\
{({x^2} - 4)({x^2} + 1) = 0}
\end{array}} \right. \\
\Rightarrow {x^2} - 4 = 0 \\
\therefore x = \pm 2,{\text{ but }}x > 0 \\
\]
Consequently, $x = 2$ is only the root of the given equation.
Note: When you are using log properties, be careful with the base. When the question says “$\ln $”, it means base is e. On the other hand, when it says “log”, it means the base Is 10, else wise questions will always write base.
${a^{{{\log }_a}x}} = x$
$\log {m^n} = n\log m$
$\log x{\text{ is real }}\forall x > 0$
We have given the equation $2{\log _3}x + {\log _3}({x^2} - 3) = {\log _3}0.5 + {5^{{{\log }_5}({{\log }_3}8)}}$ which can be written as ${\log _3}{x^2} + {\log _3}({x^2} - 3) = {\log _3}0.5 + {\log _3}8$ and on further solving we’ll get $2{\log _3}x + {\log _3}({x^2} - 3) = {\log _3}0.5 + {\log _3}4$ . This equation is equivalent to the system
\[
\left\{ {\begin{array}{*{20}{c}}
{{x^2} > 0} \\
{{x^2} - 3 > 0} \\
{{x^2}({x^2} - 3) = 4}
\end{array}} \right. \\
\Rightarrow \left\{ {\begin{array}{*{20}{c}}
{x < 0{\text{ and }}x > 0{\text{ }}} \\
{x < \sqrt 3 {\text{ and x}} > \sqrt 3 } \\
{({x^2} - 4)({x^2} + 1) = 0}
\end{array}} \right. \\
\Rightarrow {x^2} - 4 = 0 \\
\therefore x = \pm 2,{\text{ but }}x > 0 \\
\]
Consequently, $x = 2$ is only the root of the given equation.
Note: When you are using log properties, be careful with the base. When the question says “$\ln $”, it means base is e. On the other hand, when it says “log”, it means the base Is 10, else wise questions will always write base.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE