
Solve the equation: $2{\log _3}x + {\log _3}({x^2} - 3) = {\log _3}0.5 + {5^{{{\log }_5}({{\log }_3}8)}}$
Answer
603k+ views
Hint: Use logarithmic properties.
${a^{{{\log }_a}x}} = x$
$\log {m^n} = n\log m$
$\log x{\text{ is real }}\forall x > 0$
We have given the equation $2{\log _3}x + {\log _3}({x^2} - 3) = {\log _3}0.5 + {5^{{{\log }_5}({{\log }_3}8)}}$ which can be written as ${\log _3}{x^2} + {\log _3}({x^2} - 3) = {\log _3}0.5 + {\log _3}8$ and on further solving we’ll get $2{\log _3}x + {\log _3}({x^2} - 3) = {\log _3}0.5 + {\log _3}4$ . This equation is equivalent to the system
\[
\left\{ {\begin{array}{*{20}{c}}
{{x^2} > 0} \\
{{x^2} - 3 > 0} \\
{{x^2}({x^2} - 3) = 4}
\end{array}} \right. \\
\Rightarrow \left\{ {\begin{array}{*{20}{c}}
{x < 0{\text{ and }}x > 0{\text{ }}} \\
{x < \sqrt 3 {\text{ and x}} > \sqrt 3 } \\
{({x^2} - 4)({x^2} + 1) = 0}
\end{array}} \right. \\
\Rightarrow {x^2} - 4 = 0 \\
\therefore x = \pm 2,{\text{ but }}x > 0 \\
\]
Consequently, $x = 2$ is only the root of the given equation.
Note: When you are using log properties, be careful with the base. When the question says “$\ln $”, it means base is e. On the other hand, when it says “log”, it means the base Is 10, else wise questions will always write base.
${a^{{{\log }_a}x}} = x$
$\log {m^n} = n\log m$
$\log x{\text{ is real }}\forall x > 0$
We have given the equation $2{\log _3}x + {\log _3}({x^2} - 3) = {\log _3}0.5 + {5^{{{\log }_5}({{\log }_3}8)}}$ which can be written as ${\log _3}{x^2} + {\log _3}({x^2} - 3) = {\log _3}0.5 + {\log _3}8$ and on further solving we’ll get $2{\log _3}x + {\log _3}({x^2} - 3) = {\log _3}0.5 + {\log _3}4$ . This equation is equivalent to the system
\[
\left\{ {\begin{array}{*{20}{c}}
{{x^2} > 0} \\
{{x^2} - 3 > 0} \\
{{x^2}({x^2} - 3) = 4}
\end{array}} \right. \\
\Rightarrow \left\{ {\begin{array}{*{20}{c}}
{x < 0{\text{ and }}x > 0{\text{ }}} \\
{x < \sqrt 3 {\text{ and x}} > \sqrt 3 } \\
{({x^2} - 4)({x^2} + 1) = 0}
\end{array}} \right. \\
\Rightarrow {x^2} - 4 = 0 \\
\therefore x = \pm 2,{\text{ but }}x > 0 \\
\]
Consequently, $x = 2$ is only the root of the given equation.
Note: When you are using log properties, be careful with the base. When the question says “$\ln $”, it means base is e. On the other hand, when it says “log”, it means the base Is 10, else wise questions will always write base.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

