Answer

Verified

383.7k+ views

**Hint:**Here in the given logarithms we have to use the product rule. The product rule says that the logarithm of a product is the sum of logs of its factor. The product rule is ${{\log }_{b}}\left( MN \right)={{\log }_{b}}\left( M \right)+{{\log }_{b}}\left( N \right).$ Use this rule for rewriting the logarithmic expression when we shove any expression using product rule bases of the given logarithm must be the same.

**Complete step by step solution:**

Here we have,

Given: $\log \left( x \right)+\log \left( 2x \right)=10$

By using rule,

$\log m+\log n=\log mn$

Here, $m=x$ and $n=2x$

Multiply $m,n$ with each other we get,

$\therefore \log \left( x.2x \right)=10$

$\therefore \log \left( 2{{x}^{2}} \right)=10$

$\therefore 2{{x}^{2}}={{10}^{10}}$

${{x}^{2}}=\dfrac{{{10}^{10}}}{2}$

$x=\sqrt{\dfrac{{{10}^{10}}}{2}}$

$\therefore x=\pm \dfrac{{{10}^{5}}}{\sqrt{2}}$

$\therefore x=50000\sqrt{2},-500000\sqrt{2}$

**Hence,By solving the $\log \left( x \right)+\log \left( 2x \right)=10$, We get the values, $50000\sqrt{2}$ and $-50000\sqrt{2}$**

**Additional Information:**

In any exponential function and logarithm any number can be the base. However there are two bases used and also there are special names for this logarithm. In the scientific calculator you have the keys for finding the log and ln easily. Sometimes the input for the logarithm exponent on the base is more complicated. Than just a single variable. As an example we take $\log \left( 3x \right)$ Where we have $x=4$ the answer get $1.079.$ but if you didn’t use the brackets that is $\log 3x.$ then the calculator find $\log 3$ and multiply it to $4.$ Then we get $1.908.$ Which is the incorrect answer.

**Note:**We have the option in the calculator so use the calculator to determine the logarithm or power base $'e'$ Check out the given logarithm that which identity or rule suits to it and then apply it in the given logarithm. Simplify it but you get both the value as positive and negative values. Write both as an answer. We have the definition of a logarithm that is ${{\log }_{b}}\left( a \right)=C={{b}^{c}}=a$ Where as $b$ is base and $c$ is exponent and $a$ is argument. If you have any exponential form by using the definition of $\log $ you can easily simplify it in logarithmic form. These are the important tips you have to remember before solving this type of problem.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE