Solve for $x$: $\sqrt 3 {x^2} - 2\sqrt 2 x - 2\sqrt 3 = 0$
Last updated date: 16th Mar 2023
•
Total views: 308.7k
•
Views today: 7.88k
Answer
308.7k+ views
Hint- Here, we will be using a discriminant method to solve the given quadratic equation.
Given, equation is $\sqrt 3 {x^2} - 2\sqrt 2 x - 2\sqrt 3 = 0$
As we know that for any general quadratic equation $a{x^2} + bx + c = 0$, the solution is given as
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $d = \sqrt {{b^2} - 4ac} $ is the discriminant of the quadratic equation.
On comparing the given quadratic equation with the general quadratic equation, we get
$a = \sqrt 3 $ ,$b = - 2\sqrt 2 $ and $c = - 2\sqrt 3 $
Now substitute these values in the formula, we get
$
x = \dfrac{{ - \left( { - 2\sqrt 2 } \right) \pm \sqrt {{{\left( { - 2\sqrt 2 } \right)}^2} - 4\left( {\sqrt 3 } \right)\left( { - 2\sqrt 3 } \right)} }}{{2\left( {\sqrt 3 } \right)}} = \dfrac{{2\sqrt 2 \pm \sqrt {8 + 24} }}{{2\sqrt 3 }} = \dfrac{{2\sqrt 2 \pm \sqrt {32} }}{{2\sqrt 3 }} \\
\Rightarrow x = = \dfrac{{2\sqrt 2 \pm 4\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{\sqrt 2 \pm 2\sqrt 2 }}{{\sqrt 3 }} \\
$
$ \Rightarrow {x_1} = \dfrac{{\sqrt 2 + 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 2 }}{{\sqrt 3 }} = \left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right) = \sqrt 6 $ and $ \Rightarrow {x_2} = \dfrac{{\sqrt 2 - 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{ - \sqrt 2 }}{{\sqrt 3 }} = - \sqrt {\dfrac{2}{3}} $ .
i.e., The two roots of the given quadratic equation are ${x_1} = \sqrt 6 $ and ${x_2} = - \sqrt {\dfrac{2}{3}} $.
Therefore, the two values of $x$ possible in order to satisfy the given quadratic equations are $\sqrt 6 $ and $ - \sqrt {\dfrac{2}{3}} $.
Note- For any quadratic equation, $a{x^2} + bx + c = 0$, according to the value of $d = \sqrt {{b^2} - 4ac} $ we have three possible cases:
i. If it is positive, then the quadratic equation will have two different real roots.
ii. If it is equal to zero, then the quadratic equation will have real and equal roots.
iii. If it is negative, then the quadratic equation will have two different imaginary roots.
Given, equation is $\sqrt 3 {x^2} - 2\sqrt 2 x - 2\sqrt 3 = 0$
As we know that for any general quadratic equation $a{x^2} + bx + c = 0$, the solution is given as
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $d = \sqrt {{b^2} - 4ac} $ is the discriminant of the quadratic equation.
On comparing the given quadratic equation with the general quadratic equation, we get
$a = \sqrt 3 $ ,$b = - 2\sqrt 2 $ and $c = - 2\sqrt 3 $
Now substitute these values in the formula, we get
$
x = \dfrac{{ - \left( { - 2\sqrt 2 } \right) \pm \sqrt {{{\left( { - 2\sqrt 2 } \right)}^2} - 4\left( {\sqrt 3 } \right)\left( { - 2\sqrt 3 } \right)} }}{{2\left( {\sqrt 3 } \right)}} = \dfrac{{2\sqrt 2 \pm \sqrt {8 + 24} }}{{2\sqrt 3 }} = \dfrac{{2\sqrt 2 \pm \sqrt {32} }}{{2\sqrt 3 }} \\
\Rightarrow x = = \dfrac{{2\sqrt 2 \pm 4\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{\sqrt 2 \pm 2\sqrt 2 }}{{\sqrt 3 }} \\
$
$ \Rightarrow {x_1} = \dfrac{{\sqrt 2 + 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 2 }}{{\sqrt 3 }} = \left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right) = \sqrt 6 $ and $ \Rightarrow {x_2} = \dfrac{{\sqrt 2 - 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{ - \sqrt 2 }}{{\sqrt 3 }} = - \sqrt {\dfrac{2}{3}} $ .
i.e., The two roots of the given quadratic equation are ${x_1} = \sqrt 6 $ and ${x_2} = - \sqrt {\dfrac{2}{3}} $.
Therefore, the two values of $x$ possible in order to satisfy the given quadratic equations are $\sqrt 6 $ and $ - \sqrt {\dfrac{2}{3}} $.
Note- For any quadratic equation, $a{x^2} + bx + c = 0$, according to the value of $d = \sqrt {{b^2} - 4ac} $ we have three possible cases:
i. If it is positive, then the quadratic equation will have two different real roots.
ii. If it is equal to zero, then the quadratic equation will have real and equal roots.
iii. If it is negative, then the quadratic equation will have two different imaginary roots.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
