Solve for $x$: $\sqrt 3 {x^2} - 2\sqrt 2 x - 2\sqrt 3 = 0$
Answer
367.2k+ views
Hint- Here, we will be using a discriminant method to solve the given quadratic equation.
Given, equation is $\sqrt 3 {x^2} - 2\sqrt 2 x - 2\sqrt 3 = 0$
As we know that for any general quadratic equation $a{x^2} + bx + c = 0$, the solution is given as
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $d = \sqrt {{b^2} - 4ac} $ is the discriminant of the quadratic equation.
On comparing the given quadratic equation with the general quadratic equation, we get
$a = \sqrt 3 $ ,$b = - 2\sqrt 2 $ and $c = - 2\sqrt 3 $
Now substitute these values in the formula, we get
$
x = \dfrac{{ - \left( { - 2\sqrt 2 } \right) \pm \sqrt {{{\left( { - 2\sqrt 2 } \right)}^2} - 4\left( {\sqrt 3 } \right)\left( { - 2\sqrt 3 } \right)} }}{{2\left( {\sqrt 3 } \right)}} = \dfrac{{2\sqrt 2 \pm \sqrt {8 + 24} }}{{2\sqrt 3 }} = \dfrac{{2\sqrt 2 \pm \sqrt {32} }}{{2\sqrt 3 }} \\
\Rightarrow x = = \dfrac{{2\sqrt 2 \pm 4\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{\sqrt 2 \pm 2\sqrt 2 }}{{\sqrt 3 }} \\
$
$ \Rightarrow {x_1} = \dfrac{{\sqrt 2 + 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 2 }}{{\sqrt 3 }} = \left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right) = \sqrt 6 $ and $ \Rightarrow {x_2} = \dfrac{{\sqrt 2 - 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{ - \sqrt 2 }}{{\sqrt 3 }} = - \sqrt {\dfrac{2}{3}} $ .
i.e., The two roots of the given quadratic equation are ${x_1} = \sqrt 6 $ and ${x_2} = - \sqrt {\dfrac{2}{3}} $.
Therefore, the two values of $x$ possible in order to satisfy the given quadratic equations are $\sqrt 6 $ and $ - \sqrt {\dfrac{2}{3}} $.
Note- For any quadratic equation, $a{x^2} + bx + c = 0$, according to the value of $d = \sqrt {{b^2} - 4ac} $ we have three possible cases:
i. If it is positive, then the quadratic equation will have two different real roots.
ii. If it is equal to zero, then the quadratic equation will have real and equal roots.
iii. If it is negative, then the quadratic equation will have two different imaginary roots.
Given, equation is $\sqrt 3 {x^2} - 2\sqrt 2 x - 2\sqrt 3 = 0$
As we know that for any general quadratic equation $a{x^2} + bx + c = 0$, the solution is given as
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where $d = \sqrt {{b^2} - 4ac} $ is the discriminant of the quadratic equation.
On comparing the given quadratic equation with the general quadratic equation, we get
$a = \sqrt 3 $ ,$b = - 2\sqrt 2 $ and $c = - 2\sqrt 3 $
Now substitute these values in the formula, we get
$
x = \dfrac{{ - \left( { - 2\sqrt 2 } \right) \pm \sqrt {{{\left( { - 2\sqrt 2 } \right)}^2} - 4\left( {\sqrt 3 } \right)\left( { - 2\sqrt 3 } \right)} }}{{2\left( {\sqrt 3 } \right)}} = \dfrac{{2\sqrt 2 \pm \sqrt {8 + 24} }}{{2\sqrt 3 }} = \dfrac{{2\sqrt 2 \pm \sqrt {32} }}{{2\sqrt 3 }} \\
\Rightarrow x = = \dfrac{{2\sqrt 2 \pm 4\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{\sqrt 2 \pm 2\sqrt 2 }}{{\sqrt 3 }} \\
$
$ \Rightarrow {x_1} = \dfrac{{\sqrt 2 + 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 2 }}{{\sqrt 3 }} = \left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right) = \sqrt 6 $ and $ \Rightarrow {x_2} = \dfrac{{\sqrt 2 - 2\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{ - \sqrt 2 }}{{\sqrt 3 }} = - \sqrt {\dfrac{2}{3}} $ .
i.e., The two roots of the given quadratic equation are ${x_1} = \sqrt 6 $ and ${x_2} = - \sqrt {\dfrac{2}{3}} $.
Therefore, the two values of $x$ possible in order to satisfy the given quadratic equations are $\sqrt 6 $ and $ - \sqrt {\dfrac{2}{3}} $.
Note- For any quadratic equation, $a{x^2} + bx + c = 0$, according to the value of $d = \sqrt {{b^2} - 4ac} $ we have three possible cases:
i. If it is positive, then the quadratic equation will have two different real roots.
ii. If it is equal to zero, then the quadratic equation will have real and equal roots.
iii. If it is negative, then the quadratic equation will have two different imaginary roots.
Last updated date: 26th Sep 2023
•
Total views: 367.2k
•
Views today: 6.67k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE
