Answer
Verified
405.3k+ views
Hint: Rearrange the terms of the given equation by leaving the terms containing the variable ‘r’ in the L.H.S. and taking all other terms to the R.H.S. Now, make the coefficient of ‘r’ in the L.H.S. equal to 1 and accordingly change the R.H.S. to find the value of ‘r’ in terms of ‘s’ and get the answer.
Complete step-by-step solution:
Here, we have been provided with the equation: \[\dfrac{1}{2}r+3s=1\] and we are asked to solve this equation for the value of ‘r’. That means we have to find the value of ‘r’ in terms of ‘s’.
As we can see that the given equation is a linear equation in two variables ‘r’ and ‘s’, so we can only find the value of one of the variables in terms of the other. So, now leaving the terms containing the variable ‘r’ in the L.H.S. and taking all other terms to the R.H.S., we get,
\[\Rightarrow \dfrac{1}{2}r=1-3s\]
Multiplying both the sides with 2 to make the coefficient of ‘r’ equal to 1, we get,
\[\begin{align}
& \Rightarrow r=2\left( 1-3s \right) \\
& \Rightarrow r=2-6s \\
\end{align}\]
Note: One may note that we haven’t found any numerical value of r. This is because there were two variables and only one equation. To find the numerical value we will need one more relation between ‘r’ and ‘s’. In general, remember that to solve the system of equations containing ‘n’ variables we need ‘n’ number of relations between these variables. If it is not present then we can only find the value of one variable in terms of the other.
Complete step-by-step solution:
Here, we have been provided with the equation: \[\dfrac{1}{2}r+3s=1\] and we are asked to solve this equation for the value of ‘r’. That means we have to find the value of ‘r’ in terms of ‘s’.
As we can see that the given equation is a linear equation in two variables ‘r’ and ‘s’, so we can only find the value of one of the variables in terms of the other. So, now leaving the terms containing the variable ‘r’ in the L.H.S. and taking all other terms to the R.H.S., we get,
\[\Rightarrow \dfrac{1}{2}r=1-3s\]
Multiplying both the sides with 2 to make the coefficient of ‘r’ equal to 1, we get,
\[\begin{align}
& \Rightarrow r=2\left( 1-3s \right) \\
& \Rightarrow r=2-6s \\
\end{align}\]
Note: One may note that we haven’t found any numerical value of r. This is because there were two variables and only one equation. To find the numerical value we will need one more relation between ‘r’ and ‘s’. In general, remember that to solve the system of equations containing ‘n’ variables we need ‘n’ number of relations between these variables. If it is not present then we can only find the value of one variable in terms of the other.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE