
Solve $ f\left( x \right)=\dfrac{1-2\tan x}{1+2\tan x} $
Answer
564.9k+ views
Hint: We don’t have any information about what to do in the problem, they have only asked to solve the function which is in terms of $ \tan x $ . So, we will use the basic trigonometric equation that we have $ \tan x=\dfrac{\sin x}{\cos x} $ in the given functions and simplify the equation by taking LCM then we will get the result.
Complete step by step answer:
Given that,
$ f\left( x \right)=\dfrac{1-2\tan x}{1+2\tan x} $
We have the basic trigonometric formula $ \tan x=\dfrac{\sin x}{\cos x} $ , substituting this value in given equation, then we will get
$ \begin{align}
& f\left( x \right)=\dfrac{1-2\tan x}{1+2\tan x} \\
& \Rightarrow f\left( x \right)=\dfrac{1-2\left( \dfrac{\sin x}{\cos x} \right)}{1+2\left( \dfrac{\sin x}{\cos x} \right)} \\
\end{align} $
Multiplying $ 2 $ in to the parenthesis.
$ f\left( x \right)=\dfrac{1-\dfrac{2\sin x}{\cos x}}{1+\dfrac{2\sin x}{\cos x}} $
Now take the numerator and denominator individually, then
Numerator $ =1-\dfrac{2\sin x}{\cos x} $
Doing LCM in the above equation, then we will get
$ \begin{align}
& 1-\dfrac{2\sin x}{\cos x}=\dfrac{1\times \cos x-2\sin x}{\cos x} \\
& \Rightarrow 1-\dfrac{2\sin x}{\cos x}=\dfrac{\cos x-2\sin x}{\cos x} \\
\end{align} $
Considering the denominator,
Denominator $ =1+\dfrac{2\sin x}{\cos x} $
Doing LCM in the above equation, then we will get
$ \begin{align}
& 1+\dfrac{2\sin x}{\cos x}=\dfrac{1\times \cos x+2\sin x}{\cos x} \\
& \Rightarrow 1+\dfrac{2\sin x}{\cos x}=\dfrac{\cos x+2\sin x}{\cos x} \\
\end{align} $
Substituting the both the values of numerator and denominator in the given equation, then we will get
$ f\left( x \right)=\dfrac{1-\dfrac{2\sin x}{\cos x}}{1+\dfrac{2\sin x}{\cos x}} $
Writing the denominator in the form multiplication i.e., $ \dfrac{a}{b}=a\times \dfrac{1}{b} $ , then we will get
$ \Rightarrow f\left( x \right)=\left( 1-\dfrac{2\sin x}{\cos x} \right)\times \dfrac{1}{\left( 1+\dfrac{2\sin x}{\cos x} \right)} $
We have the value of $ 1+\dfrac{2\sin x}{\cos x}=\dfrac{\cos x+2\sin x}{\cos x} $ , then the value of $ \dfrac{1}{1+\dfrac{2\sin x}{\cos x}} $ can be written as
$ \begin{align}
& \dfrac{1}{1+\dfrac{2\sin x}{\cos x}}=\dfrac{1}{\dfrac{\cos x+2\sin x}{\cos x}} \\
& \Rightarrow \dfrac{1}{1+\dfrac{2\sin x}{\cos x}}=\dfrac{\cos x}{\cos x+2\sin x} \\
\end{align} $
Now substituting the above value in the given function, then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\left( \cos x-2\sin x \right)}{\cos x}\times \dfrac{\cos x}{\cos x+2\sin x} $
Rearranging the terms in the above equation, then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\cos x-2\sin x}{\cos x+2\sin x}\times \dfrac{\cos x}{\cos x} $
We know that $ \dfrac{a}{a}=1 $ , then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\cos x-2\sin x}{\cos x+2\sin x} $
Hence the above equation is simplified equation of above equation.
Note:
We can directly go for the simplification without considering the numerator and denominator individually. But students who are not comfortable with the fractions may do mistakes while simplifying, so we have considered the numerator and denominator individually and then we will simplify both and substituted in the given equation.
Complete step by step answer:
Given that,
$ f\left( x \right)=\dfrac{1-2\tan x}{1+2\tan x} $
We have the basic trigonometric formula $ \tan x=\dfrac{\sin x}{\cos x} $ , substituting this value in given equation, then we will get
$ \begin{align}
& f\left( x \right)=\dfrac{1-2\tan x}{1+2\tan x} \\
& \Rightarrow f\left( x \right)=\dfrac{1-2\left( \dfrac{\sin x}{\cos x} \right)}{1+2\left( \dfrac{\sin x}{\cos x} \right)} \\
\end{align} $
Multiplying $ 2 $ in to the parenthesis.
$ f\left( x \right)=\dfrac{1-\dfrac{2\sin x}{\cos x}}{1+\dfrac{2\sin x}{\cos x}} $
Now take the numerator and denominator individually, then
Numerator $ =1-\dfrac{2\sin x}{\cos x} $
Doing LCM in the above equation, then we will get
$ \begin{align}
& 1-\dfrac{2\sin x}{\cos x}=\dfrac{1\times \cos x-2\sin x}{\cos x} \\
& \Rightarrow 1-\dfrac{2\sin x}{\cos x}=\dfrac{\cos x-2\sin x}{\cos x} \\
\end{align} $
Considering the denominator,
Denominator $ =1+\dfrac{2\sin x}{\cos x} $
Doing LCM in the above equation, then we will get
$ \begin{align}
& 1+\dfrac{2\sin x}{\cos x}=\dfrac{1\times \cos x+2\sin x}{\cos x} \\
& \Rightarrow 1+\dfrac{2\sin x}{\cos x}=\dfrac{\cos x+2\sin x}{\cos x} \\
\end{align} $
Substituting the both the values of numerator and denominator in the given equation, then we will get
$ f\left( x \right)=\dfrac{1-\dfrac{2\sin x}{\cos x}}{1+\dfrac{2\sin x}{\cos x}} $
Writing the denominator in the form multiplication i.e., $ \dfrac{a}{b}=a\times \dfrac{1}{b} $ , then we will get
$ \Rightarrow f\left( x \right)=\left( 1-\dfrac{2\sin x}{\cos x} \right)\times \dfrac{1}{\left( 1+\dfrac{2\sin x}{\cos x} \right)} $
We have the value of $ 1+\dfrac{2\sin x}{\cos x}=\dfrac{\cos x+2\sin x}{\cos x} $ , then the value of $ \dfrac{1}{1+\dfrac{2\sin x}{\cos x}} $ can be written as
$ \begin{align}
& \dfrac{1}{1+\dfrac{2\sin x}{\cos x}}=\dfrac{1}{\dfrac{\cos x+2\sin x}{\cos x}} \\
& \Rightarrow \dfrac{1}{1+\dfrac{2\sin x}{\cos x}}=\dfrac{\cos x}{\cos x+2\sin x} \\
\end{align} $
Now substituting the above value in the given function, then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\left( \cos x-2\sin x \right)}{\cos x}\times \dfrac{\cos x}{\cos x+2\sin x} $
Rearranging the terms in the above equation, then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\cos x-2\sin x}{\cos x+2\sin x}\times \dfrac{\cos x}{\cos x} $
We know that $ \dfrac{a}{a}=1 $ , then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\cos x-2\sin x}{\cos x+2\sin x} $
Hence the above equation is simplified equation of above equation.
Note:
We can directly go for the simplification without considering the numerator and denominator individually. But students who are not comfortable with the fractions may do mistakes while simplifying, so we have considered the numerator and denominator individually and then we will simplify both and substituted in the given equation.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

