Answer
Verified
420.3k+ views
Hint: We don’t have any information about what to do in the problem, they have only asked to solve the function which is in terms of $ \tan x $ . So, we will use the basic trigonometric equation that we have $ \tan x=\dfrac{\sin x}{\cos x} $ in the given functions and simplify the equation by taking LCM then we will get the result.
Complete step by step answer:
Given that,
$ f\left( x \right)=\dfrac{1-2\tan x}{1+2\tan x} $
We have the basic trigonometric formula $ \tan x=\dfrac{\sin x}{\cos x} $ , substituting this value in given equation, then we will get
$ \begin{align}
& f\left( x \right)=\dfrac{1-2\tan x}{1+2\tan x} \\
& \Rightarrow f\left( x \right)=\dfrac{1-2\left( \dfrac{\sin x}{\cos x} \right)}{1+2\left( \dfrac{\sin x}{\cos x} \right)} \\
\end{align} $
Multiplying $ 2 $ in to the parenthesis.
$ f\left( x \right)=\dfrac{1-\dfrac{2\sin x}{\cos x}}{1+\dfrac{2\sin x}{\cos x}} $
Now take the numerator and denominator individually, then
Numerator $ =1-\dfrac{2\sin x}{\cos x} $
Doing LCM in the above equation, then we will get
$ \begin{align}
& 1-\dfrac{2\sin x}{\cos x}=\dfrac{1\times \cos x-2\sin x}{\cos x} \\
& \Rightarrow 1-\dfrac{2\sin x}{\cos x}=\dfrac{\cos x-2\sin x}{\cos x} \\
\end{align} $
Considering the denominator,
Denominator $ =1+\dfrac{2\sin x}{\cos x} $
Doing LCM in the above equation, then we will get
$ \begin{align}
& 1+\dfrac{2\sin x}{\cos x}=\dfrac{1\times \cos x+2\sin x}{\cos x} \\
& \Rightarrow 1+\dfrac{2\sin x}{\cos x}=\dfrac{\cos x+2\sin x}{\cos x} \\
\end{align} $
Substituting the both the values of numerator and denominator in the given equation, then we will get
$ f\left( x \right)=\dfrac{1-\dfrac{2\sin x}{\cos x}}{1+\dfrac{2\sin x}{\cos x}} $
Writing the denominator in the form multiplication i.e., $ \dfrac{a}{b}=a\times \dfrac{1}{b} $ , then we will get
$ \Rightarrow f\left( x \right)=\left( 1-\dfrac{2\sin x}{\cos x} \right)\times \dfrac{1}{\left( 1+\dfrac{2\sin x}{\cos x} \right)} $
We have the value of $ 1+\dfrac{2\sin x}{\cos x}=\dfrac{\cos x+2\sin x}{\cos x} $ , then the value of $ \dfrac{1}{1+\dfrac{2\sin x}{\cos x}} $ can be written as
$ \begin{align}
& \dfrac{1}{1+\dfrac{2\sin x}{\cos x}}=\dfrac{1}{\dfrac{\cos x+2\sin x}{\cos x}} \\
& \Rightarrow \dfrac{1}{1+\dfrac{2\sin x}{\cos x}}=\dfrac{\cos x}{\cos x+2\sin x} \\
\end{align} $
Now substituting the above value in the given function, then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\left( \cos x-2\sin x \right)}{\cos x}\times \dfrac{\cos x}{\cos x+2\sin x} $
Rearranging the terms in the above equation, then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\cos x-2\sin x}{\cos x+2\sin x}\times \dfrac{\cos x}{\cos x} $
We know that $ \dfrac{a}{a}=1 $ , then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\cos x-2\sin x}{\cos x+2\sin x} $
Hence the above equation is simplified equation of above equation.
Note:
We can directly go for the simplification without considering the numerator and denominator individually. But students who are not comfortable with the fractions may do mistakes while simplifying, so we have considered the numerator and denominator individually and then we will simplify both and substituted in the given equation.
Complete step by step answer:
Given that,
$ f\left( x \right)=\dfrac{1-2\tan x}{1+2\tan x} $
We have the basic trigonometric formula $ \tan x=\dfrac{\sin x}{\cos x} $ , substituting this value in given equation, then we will get
$ \begin{align}
& f\left( x \right)=\dfrac{1-2\tan x}{1+2\tan x} \\
& \Rightarrow f\left( x \right)=\dfrac{1-2\left( \dfrac{\sin x}{\cos x} \right)}{1+2\left( \dfrac{\sin x}{\cos x} \right)} \\
\end{align} $
Multiplying $ 2 $ in to the parenthesis.
$ f\left( x \right)=\dfrac{1-\dfrac{2\sin x}{\cos x}}{1+\dfrac{2\sin x}{\cos x}} $
Now take the numerator and denominator individually, then
Numerator $ =1-\dfrac{2\sin x}{\cos x} $
Doing LCM in the above equation, then we will get
$ \begin{align}
& 1-\dfrac{2\sin x}{\cos x}=\dfrac{1\times \cos x-2\sin x}{\cos x} \\
& \Rightarrow 1-\dfrac{2\sin x}{\cos x}=\dfrac{\cos x-2\sin x}{\cos x} \\
\end{align} $
Considering the denominator,
Denominator $ =1+\dfrac{2\sin x}{\cos x} $
Doing LCM in the above equation, then we will get
$ \begin{align}
& 1+\dfrac{2\sin x}{\cos x}=\dfrac{1\times \cos x+2\sin x}{\cos x} \\
& \Rightarrow 1+\dfrac{2\sin x}{\cos x}=\dfrac{\cos x+2\sin x}{\cos x} \\
\end{align} $
Substituting the both the values of numerator and denominator in the given equation, then we will get
$ f\left( x \right)=\dfrac{1-\dfrac{2\sin x}{\cos x}}{1+\dfrac{2\sin x}{\cos x}} $
Writing the denominator in the form multiplication i.e., $ \dfrac{a}{b}=a\times \dfrac{1}{b} $ , then we will get
$ \Rightarrow f\left( x \right)=\left( 1-\dfrac{2\sin x}{\cos x} \right)\times \dfrac{1}{\left( 1+\dfrac{2\sin x}{\cos x} \right)} $
We have the value of $ 1+\dfrac{2\sin x}{\cos x}=\dfrac{\cos x+2\sin x}{\cos x} $ , then the value of $ \dfrac{1}{1+\dfrac{2\sin x}{\cos x}} $ can be written as
$ \begin{align}
& \dfrac{1}{1+\dfrac{2\sin x}{\cos x}}=\dfrac{1}{\dfrac{\cos x+2\sin x}{\cos x}} \\
& \Rightarrow \dfrac{1}{1+\dfrac{2\sin x}{\cos x}}=\dfrac{\cos x}{\cos x+2\sin x} \\
\end{align} $
Now substituting the above value in the given function, then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\left( \cos x-2\sin x \right)}{\cos x}\times \dfrac{\cos x}{\cos x+2\sin x} $
Rearranging the terms in the above equation, then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\cos x-2\sin x}{\cos x+2\sin x}\times \dfrac{\cos x}{\cos x} $
We know that $ \dfrac{a}{a}=1 $ , then we will get
$ \Rightarrow f\left( x \right)=\dfrac{\cos x-2\sin x}{\cos x+2\sin x} $
Hence the above equation is simplified equation of above equation.
Note:
We can directly go for the simplification without considering the numerator and denominator individually. But students who are not comfortable with the fractions may do mistakes while simplifying, so we have considered the numerator and denominator individually and then we will simplify both and substituted in the given equation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths