
How do you solve \[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\]?
Answer
538.8k+ views
Hint: Here we need to solve for ‘x’. After taking LCM and cross multiplying we will have a quadratic equation. A polynomial of degree two is called a quadratic polynomial and its zeros can be found using many methods like factorization, completing the square, graphs, quadratic formula etc. The quadratic formula is used when we fail to find the factors of the equation.
Complete step-by-step solution:
Given,
\[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\]
Taking LCM on the left hand side of the equation we have,
\[\dfrac{{7x + 2x + 5}}{{2x + 5}} = \dfrac{{10x - 3}}{{3x}}\]
\[\dfrac{{9x + 5}}{{2x + 5}} = \dfrac{{10x - 3}}{{3x}}\]
Cross multiplying we have,
\[3x(9x + 5) = (2x + 5)(10x - 3)\].
\[27{x^2} + 15x = 2x(10x - 3) + 5(10x - 3)\]
\[27{x^2} + 15x = 20{x^2} - 6x + 50x - 15\]
\[27{x^2} + 15x - 20{x^2} + 6x - 50x + 15 = 0\]
\[27{x^2} - 20{x^2} + 15x + 6x - 50x + 15 = 0\]
\[7{x^2} - 29x + 15 = 0\]
On comparing the given equation with the standard quadratic equation \[a{x^2} + bx + c = 0\], we have \[a = 7\],\[b = - 29\] and \[c = 15\].
We cannot use the factorization method here, we are unable to split the middle term.
We have quadratic formula,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Substituting we have,
\[ \Rightarrow x = \dfrac{{ - ( - 29) \pm \sqrt {{{( - 29)}^2} - 4(7)(15)} }}{{2(7)}}\]
\[ = \dfrac{{29 \pm \sqrt {841 - 420} }}{{14}}\]
\[ = \dfrac{{29 \pm \sqrt {421} }}{{14}}\]
Thus we have two roots,
\[ \Rightarrow x = \dfrac{{29 + \sqrt {421} }}{{14}}\] and \[x = = \dfrac{{29 - \sqrt {421} }}{{14}}\].
These are the solutions of \[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\].
Note: The highest exponent of the polynomial in a polynomial equation is called its degree. A polynomial equation has exactly as many roots as its degree. In various fields of mathematics require the point at which the value of a polynomial is zero, those values are called the factors or solution or zeros of the given polynomial. On the x-axis, the value of y is zero so the roots of an equation are the points on the x-axis that is the roots are simply the x-intercepts.
Complete step-by-step solution:
Given,
\[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\]
Taking LCM on the left hand side of the equation we have,
\[\dfrac{{7x + 2x + 5}}{{2x + 5}} = \dfrac{{10x - 3}}{{3x}}\]
\[\dfrac{{9x + 5}}{{2x + 5}} = \dfrac{{10x - 3}}{{3x}}\]
Cross multiplying we have,
\[3x(9x + 5) = (2x + 5)(10x - 3)\].
\[27{x^2} + 15x = 2x(10x - 3) + 5(10x - 3)\]
\[27{x^2} + 15x = 20{x^2} - 6x + 50x - 15\]
\[27{x^2} + 15x - 20{x^2} + 6x - 50x + 15 = 0\]
\[27{x^2} - 20{x^2} + 15x + 6x - 50x + 15 = 0\]
\[7{x^2} - 29x + 15 = 0\]
On comparing the given equation with the standard quadratic equation \[a{x^2} + bx + c = 0\], we have \[a = 7\],\[b = - 29\] and \[c = 15\].
We cannot use the factorization method here, we are unable to split the middle term.
We have quadratic formula,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Substituting we have,
\[ \Rightarrow x = \dfrac{{ - ( - 29) \pm \sqrt {{{( - 29)}^2} - 4(7)(15)} }}{{2(7)}}\]
\[ = \dfrac{{29 \pm \sqrt {841 - 420} }}{{14}}\]
\[ = \dfrac{{29 \pm \sqrt {421} }}{{14}}\]
Thus we have two roots,
\[ \Rightarrow x = \dfrac{{29 + \sqrt {421} }}{{14}}\] and \[x = = \dfrac{{29 - \sqrt {421} }}{{14}}\].
These are the solutions of \[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\].
Note: The highest exponent of the polynomial in a polynomial equation is called its degree. A polynomial equation has exactly as many roots as its degree. In various fields of mathematics require the point at which the value of a polynomial is zero, those values are called the factors or solution or zeros of the given polynomial. On the x-axis, the value of y is zero so the roots of an equation are the points on the x-axis that is the roots are simply the x-intercepts.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

10 examples of evaporation in daily life with explanations

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

