
How do you solve \[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\]?
Answer
489.3k+ views
Hint: Here we need to solve for ‘x’. After taking LCM and cross multiplying we will have a quadratic equation. A polynomial of degree two is called a quadratic polynomial and its zeros can be found using many methods like factorization, completing the square, graphs, quadratic formula etc. The quadratic formula is used when we fail to find the factors of the equation.
Complete step-by-step solution:
Given,
\[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\]
Taking LCM on the left hand side of the equation we have,
\[\dfrac{{7x + 2x + 5}}{{2x + 5}} = \dfrac{{10x - 3}}{{3x}}\]
\[\dfrac{{9x + 5}}{{2x + 5}} = \dfrac{{10x - 3}}{{3x}}\]
Cross multiplying we have,
\[3x(9x + 5) = (2x + 5)(10x - 3)\].
\[27{x^2} + 15x = 2x(10x - 3) + 5(10x - 3)\]
\[27{x^2} + 15x = 20{x^2} - 6x + 50x - 15\]
\[27{x^2} + 15x - 20{x^2} + 6x - 50x + 15 = 0\]
\[27{x^2} - 20{x^2} + 15x + 6x - 50x + 15 = 0\]
\[7{x^2} - 29x + 15 = 0\]
On comparing the given equation with the standard quadratic equation \[a{x^2} + bx + c = 0\], we have \[a = 7\],\[b = - 29\] and \[c = 15\].
We cannot use the factorization method here, we are unable to split the middle term.
We have quadratic formula,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Substituting we have,
\[ \Rightarrow x = \dfrac{{ - ( - 29) \pm \sqrt {{{( - 29)}^2} - 4(7)(15)} }}{{2(7)}}\]
\[ = \dfrac{{29 \pm \sqrt {841 - 420} }}{{14}}\]
\[ = \dfrac{{29 \pm \sqrt {421} }}{{14}}\]
Thus we have two roots,
\[ \Rightarrow x = \dfrac{{29 + \sqrt {421} }}{{14}}\] and \[x = = \dfrac{{29 - \sqrt {421} }}{{14}}\].
These are the solutions of \[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\].
Note: The highest exponent of the polynomial in a polynomial equation is called its degree. A polynomial equation has exactly as many roots as its degree. In various fields of mathematics require the point at which the value of a polynomial is zero, those values are called the factors or solution or zeros of the given polynomial. On the x-axis, the value of y is zero so the roots of an equation are the points on the x-axis that is the roots are simply the x-intercepts.
Complete step-by-step solution:
Given,
\[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\]
Taking LCM on the left hand side of the equation we have,
\[\dfrac{{7x + 2x + 5}}{{2x + 5}} = \dfrac{{10x - 3}}{{3x}}\]
\[\dfrac{{9x + 5}}{{2x + 5}} = \dfrac{{10x - 3}}{{3x}}\]
Cross multiplying we have,
\[3x(9x + 5) = (2x + 5)(10x - 3)\].
\[27{x^2} + 15x = 2x(10x - 3) + 5(10x - 3)\]
\[27{x^2} + 15x = 20{x^2} - 6x + 50x - 15\]
\[27{x^2} + 15x - 20{x^2} + 6x - 50x + 15 = 0\]
\[27{x^2} - 20{x^2} + 15x + 6x - 50x + 15 = 0\]
\[7{x^2} - 29x + 15 = 0\]
On comparing the given equation with the standard quadratic equation \[a{x^2} + bx + c = 0\], we have \[a = 7\],\[b = - 29\] and \[c = 15\].
We cannot use the factorization method here, we are unable to split the middle term.
We have quadratic formula,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Substituting we have,
\[ \Rightarrow x = \dfrac{{ - ( - 29) \pm \sqrt {{{( - 29)}^2} - 4(7)(15)} }}{{2(7)}}\]
\[ = \dfrac{{29 \pm \sqrt {841 - 420} }}{{14}}\]
\[ = \dfrac{{29 \pm \sqrt {421} }}{{14}}\]
Thus we have two roots,
\[ \Rightarrow x = \dfrac{{29 + \sqrt {421} }}{{14}}\] and \[x = = \dfrac{{29 - \sqrt {421} }}{{14}}\].
These are the solutions of \[\dfrac{{7x}}{{2x + 5}} + 1 = \dfrac{{10x - 3}}{{3x}}\].
Note: The highest exponent of the polynomial in a polynomial equation is called its degree. A polynomial equation has exactly as many roots as its degree. In various fields of mathematics require the point at which the value of a polynomial is zero, those values are called the factors or solution or zeros of the given polynomial. On the x-axis, the value of y is zero so the roots of an equation are the points on the x-axis that is the roots are simply the x-intercepts.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a paragraph on any one of the following outlines class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Which period in Medieval Western Europe is known as class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
