
How do you solve \[\dfrac{2}{3}x-\dfrac{1}{6}=\dfrac{1}{2}x+\dfrac{5}{6}\]?
Answer
541.2k+ views
Hint: Multiply both the sides with 6 to remove the fractional terms. Now, rearrange the terms by taking the terms containing the variable x to the L.H.S. and taking all the constant terms to the R.H.S. Use simple arithmetic operations like: - addition, subtraction, multiplication, division whichever needed, to make the coefficient of x equal to 1. Accordingly change the R.H.S. to get the answer.
Complete step by step answer:
Here, we have been provided with the linear equation: - \[\dfrac{2}{3}x-\dfrac{1}{6}=\dfrac{1}{2}x+\dfrac{5}{6}\] and we are asked to solve this equation. That means we have to find the value of x.
Now, we can see that we have 2, 3 and 6 as the denominators of different terms in the given equation. We know that the L.C.M. of these numbers will be 6, so multiplying both the sides with 6 to remove the fractional terms, we get,
\[\Rightarrow 4x-1=3x+5\]
As we can see that the given equation is a linear equation in one variable which is x, so taking the terms containing the variable x to the L.H.S. and taking all the constant terms to the R.H.S., we get,
\[\begin{align}
& \Rightarrow 4x-3x=1+5 \\
& \Rightarrow x=6 \\
\end{align}\]
Hence, the value of x is 6.
Note: One may note that we have been provided with a single equation only. The reason is that we have to find the value of only one variable, that is x. So, in general if we have to solve an equation having ‘n’ number of variables then we should be provided with ‘n’ number of equations. Now, one can check the answer by substituting the obtained value of x in the equation provided in the question. We have to determine the value of L.H.S. and R.H.S. separately and if they are equal then our answer is correct.
Complete step by step answer:
Here, we have been provided with the linear equation: - \[\dfrac{2}{3}x-\dfrac{1}{6}=\dfrac{1}{2}x+\dfrac{5}{6}\] and we are asked to solve this equation. That means we have to find the value of x.
Now, we can see that we have 2, 3 and 6 as the denominators of different terms in the given equation. We know that the L.C.M. of these numbers will be 6, so multiplying both the sides with 6 to remove the fractional terms, we get,
\[\Rightarrow 4x-1=3x+5\]
As we can see that the given equation is a linear equation in one variable which is x, so taking the terms containing the variable x to the L.H.S. and taking all the constant terms to the R.H.S., we get,
\[\begin{align}
& \Rightarrow 4x-3x=1+5 \\
& \Rightarrow x=6 \\
\end{align}\]
Hence, the value of x is 6.
Note: One may note that we have been provided with a single equation only. The reason is that we have to find the value of only one variable, that is x. So, in general if we have to solve an equation having ‘n’ number of variables then we should be provided with ‘n’ number of equations. Now, one can check the answer by substituting the obtained value of x in the equation provided in the question. We have to determine the value of L.H.S. and R.H.S. separately and if they are equal then our answer is correct.
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

What is pollution? How many types of pollution? Define it

