Answer

Verified

466.8k+ views

Hint: Take LHS and simplify it. While simplifying, use the identities $\cos (A+B)=\cos A\cos B-\sin A\sin B$,$\cos (A-B)=\cos A\cos B+\sin A\sin B$,${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$ and $\cos 3A=4{{\cos }^{3}}A-3\cos A$. You will get the answer.

Complete step-by-step answer:

The trigonometric functions (also called circular functions, angle functions, or trigonometric functions) are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena, through Fourier analysis.

The most widely used trigonometric functions are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern Mathematics.

The cosine function, along with sine and tangent, is one of the three most common trigonometric functions. In any right triangle, the cosine of an angle is the length of the adjacent side (A) divided by the length of the hypotenuse (H). In a formula, it is written simply as '$\cos $'. $\cos $ function (or cosine function) in a triangle is the ratio of the adjacent side to that of the hypotenuse. The cosine function is one of the three main primary trigonometric functions and it is itself the complement of sine (co + sine).

The cosine graph or the cos graph is an up-down graph just like the sine graph. The only difference between the sine graph and the cos graph is that the sine graph starts from $0$ while the cos graph starts from $90{}^\circ $ (or $\dfrac{\pi }{2}$).

So we have to prove LHS$=$RHS.

Now taking LHS$=\cos A.\cos (60+A).\cos (60-A)$, we know the identities $\cos (A+B)=\cos A\cos B-\sin A\sin B$ and $\cos (A-B)=\cos A\cos B+\sin A\sin B$.

Applying the above identities we get,

$=\cos A.(\cos 60\cos A-\sin 60\sin A).(\cos 60\cos A+\sin 60\sin A)$

Now we know ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$.

So applying above we get,

$\begin{align}

& =\cos A.({{\cos }^{2}}60{{\cos }^{2}}A-{{\sin }^{2}}60{{\sin }^{2}}A) \\

& =\cos A.(\dfrac{1}{4}{{\cos }^{2}}A-\dfrac{3}{4}{{\sin }^{2}}A) \\

\end{align}$………….. ($\cos 60=\dfrac{1}{2}$ and $\sin 60=\dfrac{\sqrt{3}}{2}$)

Taking $\dfrac{1}{4}$ common we get,

$=\dfrac{1}{4}\cos A.({{\cos }^{2}}A-3{{\sin }^{2}}A)$

We also know ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. Applying this property, we get,

$\begin{align}

& =\dfrac{1}{4}\cos A.({{\cos }^{2}}A-3(1-{{\cos }^{2}}A)) \\

& =\dfrac{1}{4}\cos A.({{\cos }^{2}}A-3+3{{\cos }^{2}}A) \\

& =\dfrac{1}{4}\cos A.(4{{\cos }^{2}}A-3) \\

& =\dfrac{1}{4}(4{{\cos }^{3}}A-3\cos A) \\

\end{align}$

Here we know the identity $\cos 3A=4{{\cos }^{3}}A-3\cos A$.

So applying above we get,

$=\dfrac{1}{4}\cos 3A=$RHS

So we have proved LHS$=$RHS.

$\cos A.\cos (60+A).\cos (60-A)=\dfrac{1}{4}\cos 3A$

Hence proved.

Note: Carefully read the question. Here to prove LHS$=$RHS you should be familiar with the identities. Most of the mistakes are done while simplifying so kindly avoid the mistakes while simplifying. Try to see what is the major concept behind these.

Complete step-by-step answer:

The trigonometric functions (also called circular functions, angle functions, or trigonometric functions) are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena, through Fourier analysis.

The most widely used trigonometric functions are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern Mathematics.

The cosine function, along with sine and tangent, is one of the three most common trigonometric functions. In any right triangle, the cosine of an angle is the length of the adjacent side (A) divided by the length of the hypotenuse (H). In a formula, it is written simply as '$\cos $'. $\cos $ function (or cosine function) in a triangle is the ratio of the adjacent side to that of the hypotenuse. The cosine function is one of the three main primary trigonometric functions and it is itself the complement of sine (co + sine).

The cosine graph or the cos graph is an up-down graph just like the sine graph. The only difference between the sine graph and the cos graph is that the sine graph starts from $0$ while the cos graph starts from $90{}^\circ $ (or $\dfrac{\pi }{2}$).

So we have to prove LHS$=$RHS.

Now taking LHS$=\cos A.\cos (60+A).\cos (60-A)$, we know the identities $\cos (A+B)=\cos A\cos B-\sin A\sin B$ and $\cos (A-B)=\cos A\cos B+\sin A\sin B$.

Applying the above identities we get,

$=\cos A.(\cos 60\cos A-\sin 60\sin A).(\cos 60\cos A+\sin 60\sin A)$

Now we know ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$.

So applying above we get,

$\begin{align}

& =\cos A.({{\cos }^{2}}60{{\cos }^{2}}A-{{\sin }^{2}}60{{\sin }^{2}}A) \\

& =\cos A.(\dfrac{1}{4}{{\cos }^{2}}A-\dfrac{3}{4}{{\sin }^{2}}A) \\

\end{align}$………….. ($\cos 60=\dfrac{1}{2}$ and $\sin 60=\dfrac{\sqrt{3}}{2}$)

Taking $\dfrac{1}{4}$ common we get,

$=\dfrac{1}{4}\cos A.({{\cos }^{2}}A-3{{\sin }^{2}}A)$

We also know ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. Applying this property, we get,

$\begin{align}

& =\dfrac{1}{4}\cos A.({{\cos }^{2}}A-3(1-{{\cos }^{2}}A)) \\

& =\dfrac{1}{4}\cos A.({{\cos }^{2}}A-3+3{{\cos }^{2}}A) \\

& =\dfrac{1}{4}\cos A.(4{{\cos }^{2}}A-3) \\

& =\dfrac{1}{4}(4{{\cos }^{3}}A-3\cos A) \\

\end{align}$

Here we know the identity $\cos 3A=4{{\cos }^{3}}A-3\cos A$.

So applying above we get,

$=\dfrac{1}{4}\cos 3A=$RHS

So we have proved LHS$=$RHS.

$\cos A.\cos (60+A).\cos (60-A)=\dfrac{1}{4}\cos 3A$

Hence proved.

Note: Carefully read the question. Here to prove LHS$=$RHS you should be familiar with the identities. Most of the mistakes are done while simplifying so kindly avoid the mistakes while simplifying. Try to see what is the major concept behind these.

Recently Updated Pages

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference Between Plant Cell and Animal Cell

Which are the Top 10 Largest Countries of the World?

10 examples of evaporation in daily life with explanations

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE