
How do you solve by completing the square ${x^2} + 18x + 80 = 0$?
Answer
539.7k+ views
Hint: To determine the solution to the above equation using completing the square method, first divide the equation by the coefficient of ${x^2}$ to convert into ${x^2} + bx$ form and add ${\left( {\dfrac{b}{2}} \right)^2}$
${\left( {\dfrac{b}{2}} \right)^2}$to make ${x^2} + bx + {\left( {\dfrac{b}{2}} \right)^2}$ which is a perfect square of ${\left( {x + \dfrac{b}{2}} \right)^2}$. Now apply the formula $({A^2} - {B^2}) = (A + B)(A - B)$ to factorise it further and find the required values of $x$.
Complete step-by-step solution:
We are given a quadratic equation ${x^2} + 18x + 80 = 0$
First divide the whole equation with the coefficient of ${x^2}$ to obtain the form${x^2} + bx$in the equation only if the coefficient is not equal to 1.
Since in our case the coefficient is already equal to one, so no need to divide.
${x^2} + 18x + 80 = 0$
We are going to rearrange ${x^2} + bx + e$in order to complete it into a square by adding${\left( {\dfrac{b}{2}} \right)^2}$to make ${x^2} + bx + {\left( {\dfrac{b}{2}} \right)^2}$which is a perfect square of ${\left( {x + \dfrac{b}{2}} \right)^2}$where b is the coefficient of x .
\[{\left( {\dfrac{b}{2}} \right)^2} = {\left( {\dfrac{{18}}{2}} \right)^2} = {\left( 9 \right)^2} = 81\]
Therefore we have to add $81$ in the equation to make it a square but we can’t simply add $81$ on LHS as this will disturb the balance, so we will add $81$on both sides of the equation. Our equation will now become .
\[ \Rightarrow {x^2} + 18x + 81 + 80 = 81\]
\[{x^2} + 18x + 81\] can be written as ${\left( {x + 9} \right)^2}$
$
\Rightarrow {\left( {x + 9} \right)^2} + 80 = 81 \\
\Rightarrow {\left( {x + 1} \right)^2} - 81 + 80 = 0 \\
\Rightarrow {\left( {x + 1} \right)^2} - 1 = 0 \\
$
$1$can be written as \[{1^2}\]
$ \Rightarrow {\left( {x + 9} \right)^2} - {1^2} = 0$
Using the identity $({A^2} - {B^2}) = (A + B)(A - B)$ Where A is$x + 9$ and B as $1$
$
\Rightarrow {\left( {x + 9} \right)^2} - {1^2} = 0 \\
\Rightarrow \left( {x + 9 + 1} \right)\left( {x + 9 - 1} \right) = 0 \\
\Rightarrow \left( {x + 10} \right)\left( {x + 8} \right) = 0 \\
x + 10 = 0 \\
\Rightarrow x = - 10 \\
x + 8 = 0 \\
\Rightarrow x = - 8 \\
$
Therefore, the solution to ${x^2} + 18x + 80 = 0$ is equal to $x = - 8, - 10$
Note:
Quadratic Equation: A quadratic equation is a equation which can be represented in the form of $a{x^2} + bx + c$where $x$is the unknown variable and a,b,c are the numbers known where $a \ne 0$.If $a = 0$then the equation will become linear equation and will no more quadratic .
The degree of the quadratic equation is of the order 2.
Every Quadratic equation has 2 roots.
Discriminant: $D = {b^2} - 4ac$
Using Discriminant, we can find out the nature of the roots
-If D is equal to zero, then both of the roots will be the same and real.
-If D is a positive number then, both of the roots are real solutions.
-If D is a negative number, then the root are the pair of complex solutions
${\left( {\dfrac{b}{2}} \right)^2}$to make ${x^2} + bx + {\left( {\dfrac{b}{2}} \right)^2}$ which is a perfect square of ${\left( {x + \dfrac{b}{2}} \right)^2}$. Now apply the formula $({A^2} - {B^2}) = (A + B)(A - B)$ to factorise it further and find the required values of $x$.
Complete step-by-step solution:
We are given a quadratic equation ${x^2} + 18x + 80 = 0$
First divide the whole equation with the coefficient of ${x^2}$ to obtain the form${x^2} + bx$in the equation only if the coefficient is not equal to 1.
Since in our case the coefficient is already equal to one, so no need to divide.
${x^2} + 18x + 80 = 0$
We are going to rearrange ${x^2} + bx + e$in order to complete it into a square by adding${\left( {\dfrac{b}{2}} \right)^2}$to make ${x^2} + bx + {\left( {\dfrac{b}{2}} \right)^2}$which is a perfect square of ${\left( {x + \dfrac{b}{2}} \right)^2}$where b is the coefficient of x .
\[{\left( {\dfrac{b}{2}} \right)^2} = {\left( {\dfrac{{18}}{2}} \right)^2} = {\left( 9 \right)^2} = 81\]
Therefore we have to add $81$ in the equation to make it a square but we can’t simply add $81$ on LHS as this will disturb the balance, so we will add $81$on both sides of the equation. Our equation will now become .
\[ \Rightarrow {x^2} + 18x + 81 + 80 = 81\]
\[{x^2} + 18x + 81\] can be written as ${\left( {x + 9} \right)^2}$
$
\Rightarrow {\left( {x + 9} \right)^2} + 80 = 81 \\
\Rightarrow {\left( {x + 1} \right)^2} - 81 + 80 = 0 \\
\Rightarrow {\left( {x + 1} \right)^2} - 1 = 0 \\
$
$1$can be written as \[{1^2}\]
$ \Rightarrow {\left( {x + 9} \right)^2} - {1^2} = 0$
Using the identity $({A^2} - {B^2}) = (A + B)(A - B)$ Where A is$x + 9$ and B as $1$
$
\Rightarrow {\left( {x + 9} \right)^2} - {1^2} = 0 \\
\Rightarrow \left( {x + 9 + 1} \right)\left( {x + 9 - 1} \right) = 0 \\
\Rightarrow \left( {x + 10} \right)\left( {x + 8} \right) = 0 \\
x + 10 = 0 \\
\Rightarrow x = - 10 \\
x + 8 = 0 \\
\Rightarrow x = - 8 \\
$
Therefore, the solution to ${x^2} + 18x + 80 = 0$ is equal to $x = - 8, - 10$
Note:
Quadratic Equation: A quadratic equation is a equation which can be represented in the form of $a{x^2} + bx + c$where $x$is the unknown variable and a,b,c are the numbers known where $a \ne 0$.If $a = 0$then the equation will become linear equation and will no more quadratic .
The degree of the quadratic equation is of the order 2.
Every Quadratic equation has 2 roots.
Discriminant: $D = {b^2} - 4ac$
Using Discriminant, we can find out the nature of the roots
-If D is equal to zero, then both of the roots will be the same and real.
-If D is a positive number then, both of the roots are real solutions.
-If D is a negative number, then the root are the pair of complex solutions
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

