How do you solve by completing the square ${x^2} + 18x + 80 = 0$?
Answer
Verified
440.4k+ views
Hint: To determine the solution to the above equation using completing the square method, first divide the equation by the coefficient of ${x^2}$ to convert into ${x^2} + bx$ form and add ${\left( {\dfrac{b}{2}} \right)^2}$
${\left( {\dfrac{b}{2}} \right)^2}$to make ${x^2} + bx + {\left( {\dfrac{b}{2}} \right)^2}$ which is a perfect square of ${\left( {x + \dfrac{b}{2}} \right)^2}$. Now apply the formula $({A^2} - {B^2}) = (A + B)(A - B)$ to factorise it further and find the required values of $x$.
Complete step-by-step solution:
We are given a quadratic equation ${x^2} + 18x + 80 = 0$
First divide the whole equation with the coefficient of ${x^2}$ to obtain the form${x^2} + bx$in the equation only if the coefficient is not equal to 1.
Since in our case the coefficient is already equal to one, so no need to divide.
${x^2} + 18x + 80 = 0$
We are going to rearrange ${x^2} + bx + e$in order to complete it into a square by adding${\left( {\dfrac{b}{2}} \right)^2}$to make ${x^2} + bx + {\left( {\dfrac{b}{2}} \right)^2}$which is a perfect square of ${\left( {x + \dfrac{b}{2}} \right)^2}$where b is the coefficient of x .
\[{\left( {\dfrac{b}{2}} \right)^2} = {\left( {\dfrac{{18}}{2}} \right)^2} = {\left( 9 \right)^2} = 81\]
Therefore we have to add $81$ in the equation to make it a square but we can’t simply add $81$ on LHS as this will disturb the balance, so we will add $81$on both sides of the equation. Our equation will now become .
\[ \Rightarrow {x^2} + 18x + 81 + 80 = 81\]
\[{x^2} + 18x + 81\] can be written as ${\left( {x + 9} \right)^2}$
$
\Rightarrow {\left( {x + 9} \right)^2} + 80 = 81 \\
\Rightarrow {\left( {x + 1} \right)^2} - 81 + 80 = 0 \\
\Rightarrow {\left( {x + 1} \right)^2} - 1 = 0 \\
$
$1$can be written as \[{1^2}\]
$ \Rightarrow {\left( {x + 9} \right)^2} - {1^2} = 0$
Using the identity $({A^2} - {B^2}) = (A + B)(A - B)$ Where A is$x + 9$ and B as $1$
$
\Rightarrow {\left( {x + 9} \right)^2} - {1^2} = 0 \\
\Rightarrow \left( {x + 9 + 1} \right)\left( {x + 9 - 1} \right) = 0 \\
\Rightarrow \left( {x + 10} \right)\left( {x + 8} \right) = 0 \\
x + 10 = 0 \\
\Rightarrow x = - 10 \\
x + 8 = 0 \\
\Rightarrow x = - 8 \\
$
Therefore, the solution to ${x^2} + 18x + 80 = 0$ is equal to $x = - 8, - 10$
Note:
Quadratic Equation: A quadratic equation is a equation which can be represented in the form of $a{x^2} + bx + c$where $x$is the unknown variable and a,b,c are the numbers known where $a \ne 0$.If $a = 0$then the equation will become linear equation and will no more quadratic .
The degree of the quadratic equation is of the order 2.
Every Quadratic equation has 2 roots.
Discriminant: $D = {b^2} - 4ac$
Using Discriminant, we can find out the nature of the roots
-If D is equal to zero, then both of the roots will be the same and real.
-If D is a positive number then, both of the roots are real solutions.
-If D is a negative number, then the root are the pair of complex solutions
${\left( {\dfrac{b}{2}} \right)^2}$to make ${x^2} + bx + {\left( {\dfrac{b}{2}} \right)^2}$ which is a perfect square of ${\left( {x + \dfrac{b}{2}} \right)^2}$. Now apply the formula $({A^2} - {B^2}) = (A + B)(A - B)$ to factorise it further and find the required values of $x$.
Complete step-by-step solution:
We are given a quadratic equation ${x^2} + 18x + 80 = 0$
First divide the whole equation with the coefficient of ${x^2}$ to obtain the form${x^2} + bx$in the equation only if the coefficient is not equal to 1.
Since in our case the coefficient is already equal to one, so no need to divide.
${x^2} + 18x + 80 = 0$
We are going to rearrange ${x^2} + bx + e$in order to complete it into a square by adding${\left( {\dfrac{b}{2}} \right)^2}$to make ${x^2} + bx + {\left( {\dfrac{b}{2}} \right)^2}$which is a perfect square of ${\left( {x + \dfrac{b}{2}} \right)^2}$where b is the coefficient of x .
\[{\left( {\dfrac{b}{2}} \right)^2} = {\left( {\dfrac{{18}}{2}} \right)^2} = {\left( 9 \right)^2} = 81\]
Therefore we have to add $81$ in the equation to make it a square but we can’t simply add $81$ on LHS as this will disturb the balance, so we will add $81$on both sides of the equation. Our equation will now become .
\[ \Rightarrow {x^2} + 18x + 81 + 80 = 81\]
\[{x^2} + 18x + 81\] can be written as ${\left( {x + 9} \right)^2}$
$
\Rightarrow {\left( {x + 9} \right)^2} + 80 = 81 \\
\Rightarrow {\left( {x + 1} \right)^2} - 81 + 80 = 0 \\
\Rightarrow {\left( {x + 1} \right)^2} - 1 = 0 \\
$
$1$can be written as \[{1^2}\]
$ \Rightarrow {\left( {x + 9} \right)^2} - {1^2} = 0$
Using the identity $({A^2} - {B^2}) = (A + B)(A - B)$ Where A is$x + 9$ and B as $1$
$
\Rightarrow {\left( {x + 9} \right)^2} - {1^2} = 0 \\
\Rightarrow \left( {x + 9 + 1} \right)\left( {x + 9 - 1} \right) = 0 \\
\Rightarrow \left( {x + 10} \right)\left( {x + 8} \right) = 0 \\
x + 10 = 0 \\
\Rightarrow x = - 10 \\
x + 8 = 0 \\
\Rightarrow x = - 8 \\
$
Therefore, the solution to ${x^2} + 18x + 80 = 0$ is equal to $x = - 8, - 10$
Note:
Quadratic Equation: A quadratic equation is a equation which can be represented in the form of $a{x^2} + bx + c$where $x$is the unknown variable and a,b,c are the numbers known where $a \ne 0$.If $a = 0$then the equation will become linear equation and will no more quadratic .
The degree of the quadratic equation is of the order 2.
Every Quadratic equation has 2 roots.
Discriminant: $D = {b^2} - 4ac$
Using Discriminant, we can find out the nature of the roots
-If D is equal to zero, then both of the roots will be the same and real.
-If D is a positive number then, both of the roots are real solutions.
-If D is a negative number, then the root are the pair of complex solutions
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE