Answer
Verified
430.2k+ views
Hint: We will first write the given equation in the form of a general quadratic equation and then write the formula of finding the roots of a quadratic and use it.
Complete step-by-step answer:
We are given that we need to solve the equation $7{x^2} - 3x = 2$ using the quadratic formula.
The general quadratic equation is of the form: $a{x^2} + bx + c = 0$ and its roots are given by the formulas: $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ where D is the discriminant and is given by $D = {b^2} - 4ac$.
We can write the given equation $7{x^2} - 3x = 2$ as following:-
$ \Rightarrow 7{x^2} - 3x - 2 = 0$
Comparing it to the general quadratic equation, we will get: a = 7, b = -3 and c = -2.
Now, to get the roots, let us find the roots by putting the above mentioned values in the formulas mentioned above. So, we will get the discriminant as $D = {\left( { - 3} \right)^2} - 4 \times 7 \times \left( { - 2} \right)$.
Simplifying the calculation by opening the required square on the right hand side to obtain the following:-
$ \Rightarrow D = 9 - 4 \times 7 \times \left( { - 2} \right)$
Simplifying the calculations further to obtain the following expression:-
$ \Rightarrow $D = 9 + 56
Simplifying the adding the numbers in the right hand side to obtain:-
$ \Rightarrow $D = 65
Now, let us put this in the formula: $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$, we will then get:-
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {65} }}{{2a}}$
Now putting a = 7, b = -3 and c = -2 in the above expression, we will then obtain expression:-
$ \Rightarrow x = \dfrac{{ - \left( { - 3} \right) \pm \sqrt {65} }}{{2\left( 7 \right)}}$
Simplifying the calculations by taking – ( - a ) = a in the above expression, we will then obtain:-
$ \Rightarrow x = \dfrac{{3 \pm \sqrt {65} }}{{14}}$
Hence, the roots are $x = \dfrac{{3 + \sqrt {65} }}{{14}}$ and $x = \dfrac{{3 - \sqrt {65} }}{{14}}$.
Note:
The students must commit to the memory that:
The general quadratic equation is of the form: $a{x^2} + bx + c = 0$ and its roots are given by the formulas: $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ where D is the discriminant and is given by $D = {b^2} - 4ac$.
The roots of the equation depends on the value of D as well. If D > 0, we have real and distinct roots, if D = 0, we have real and equal roots and if D < 0 we get imaginary roots which exist in conjugate pairs.
Complete step-by-step answer:
We are given that we need to solve the equation $7{x^2} - 3x = 2$ using the quadratic formula.
The general quadratic equation is of the form: $a{x^2} + bx + c = 0$ and its roots are given by the formulas: $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ where D is the discriminant and is given by $D = {b^2} - 4ac$.
We can write the given equation $7{x^2} - 3x = 2$ as following:-
$ \Rightarrow 7{x^2} - 3x - 2 = 0$
Comparing it to the general quadratic equation, we will get: a = 7, b = -3 and c = -2.
Now, to get the roots, let us find the roots by putting the above mentioned values in the formulas mentioned above. So, we will get the discriminant as $D = {\left( { - 3} \right)^2} - 4 \times 7 \times \left( { - 2} \right)$.
Simplifying the calculation by opening the required square on the right hand side to obtain the following:-
$ \Rightarrow D = 9 - 4 \times 7 \times \left( { - 2} \right)$
Simplifying the calculations further to obtain the following expression:-
$ \Rightarrow $D = 9 + 56
Simplifying the adding the numbers in the right hand side to obtain:-
$ \Rightarrow $D = 65
Now, let us put this in the formula: $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$, we will then get:-
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {65} }}{{2a}}$
Now putting a = 7, b = -3 and c = -2 in the above expression, we will then obtain expression:-
$ \Rightarrow x = \dfrac{{ - \left( { - 3} \right) \pm \sqrt {65} }}{{2\left( 7 \right)}}$
Simplifying the calculations by taking – ( - a ) = a in the above expression, we will then obtain:-
$ \Rightarrow x = \dfrac{{3 \pm \sqrt {65} }}{{14}}$
Hence, the roots are $x = \dfrac{{3 + \sqrt {65} }}{{14}}$ and $x = \dfrac{{3 - \sqrt {65} }}{{14}}$.
Note:
The students must commit to the memory that:
The general quadratic equation is of the form: $a{x^2} + bx + c = 0$ and its roots are given by the formulas: $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ where D is the discriminant and is given by $D = {b^2} - 4ac$.
The roots of the equation depends on the value of D as well. If D > 0, we have real and distinct roots, if D = 0, we have real and equal roots and if D < 0 we get imaginary roots which exist in conjugate pairs.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE