Answer

Verified

437.1k+ views

**Hint**: For easy and convenient mean of solving the above equation we need to find a link between $ ({x^2} + \dfrac{1}{{{x^2}}}) $ and $ (x - \dfrac{1}{x}) $ . Once we get a link we can replace the common terms by a single letter such as ‘m’ or ‘n’ except ‘x’. Then using the middle term factorization method we need to find the solution of the derived equation and from there again using the same middle term factorization method we will get to know the values of x.

**:**

__Complete step-by-step answer__Given:

$ 30({x^2} + \dfrac{1}{{{x^2}}}) - 77(x - \dfrac{1}{x}) - 12 = 0 $

We have to find the possible values of x i.e. the roots of the given equation.

$ 30({x^2} + \dfrac{1}{{{x^2}}}) - 77(x - \dfrac{1}{x}) - 12 = 0 $

Now, $ {(x - \dfrac{1}{x})^2} = {x^2} + \dfrac{1}{{{x^2}}} - 2 $

Hence, $ {x^2} + \dfrac{1}{{{x^2}}} = {(x - \dfrac{1}{x})^2} + 2 $

Now, putting the above value $ {x^2} + \dfrac{1}{{{x^2}}} = {(x - \dfrac{1}{x})^2} + 2 $ in the given equation, we will get as below:

$ 30({(x - \dfrac{1}{x})^2} + 2) - 77(x - \dfrac{1}{x}) - 12 = 0 $

Now, let $ (x - \dfrac{1}{x}) = m $ , putting the value $ (x - \dfrac{1}{x}) = m $ in the above equation, we will get as below:

$ \Rightarrow 30({m^2} + 2) - 77m - 12 = 0 $

$ \Rightarrow 30{m^2} + 60 - 77m - 12 = 0 $

$ \Rightarrow 30{m^2} - 77m + 48 = 0 $

Now, we need to factorize the derived equation using the middle term factorization method

So, we will be getting as below

$ \Rightarrow 30{m^2} - 45m - 32m + 48 = 0 $

$ \Rightarrow 15m(2m - 3) - 16(2m - 3) = 0 $

\[\Rightarrow (15m - 16)(2m - 3) = 0\]

So, $ 15m - 16 = 0 $

Therefore, $ m = \dfrac{{16}}{{15}} $

Similarly, $ m = \dfrac{3}{2} $

Now, substituting the value of m since $ (x - \dfrac{1}{x}) = m $ we will be getting as

$ \Rightarrow (x - \dfrac{1}{x}) = \dfrac{{16}}{{15}} $ and $ (x - \dfrac{1}{x}) = \dfrac{3}{2} $

Now, lets solve $ (x - \dfrac{1}{x}) = \dfrac{{16}}{{15}} $

$ \Rightarrow (x - \dfrac{1}{x}) = \dfrac{{16}}{{15}} $

$ \Rightarrow \dfrac{{{x^2} - 1}}{x} = \dfrac{{16}}{{15}} $

$ \Rightarrow 15({x^2} - 1) = 16x $

$ \Rightarrow 15{x^2} - 16x - 15 = 0 $

$ \Rightarrow 15{x^2} - 25x + 9x - 15 = 0 $

$ \Rightarrow 5x(3x - 5) + 3(3x - 5) = 0 $

$ (5x + 3)(3x - 5) = 0 $

So, $ (5x + 3) = 0 $

Hence, $ x = - \dfrac{3}{5} $

Similarly, $ (3x - 5) = 0 $

Hence, $ x = \dfrac{5}{3} $

Now, lets solve $ (x - \dfrac{1}{x}) = \dfrac{3}{2} $

$ (x - \dfrac{1}{x}) = \dfrac{3}{2} $

$ \dfrac{{{x^2} - 1}}{x} = \dfrac{3}{2} $

$ \Rightarrow 2({x^2} - 1) = 3x $

$ \Rightarrow 2{x^2} - 3x - 2 = 0 $

$ \Rightarrow 2{x^2} - 4x + 1x - 2 = 0 $

$ \Rightarrow 2x(x - 2) + 1(x - 2) = 0 $

$ \Rightarrow (2x + 1)(x - 2) = 0 $

So, $ (2x + 1) = 0 $

Hence, $ x = - \dfrac{1}{2} $

Similarly, $ (x - 2) = 0 $

Hence, $ x = 2 $

Therefore the possible values of x or we can say the roots of the given equation are $ - \dfrac{3}{5} $ , $ \dfrac{5}{3} $ , $ - \dfrac{1}{2} $ , $ 2 $ .

**So, the correct answer is “ $ - \dfrac{3}{5} $ , $ \dfrac{5}{3} $ , $ - \dfrac{1}{2} $ , $ 2 $ .”.**

**Note**: Though the above process seems simple but yet sometimes it can create confusion because we are doing substitution and also implementing the middle term factorization method number of times. So, be careful and don’t miss the values of x. Remember, in case of $ {x^2} $ or $ \dfrac{1}{{{x^2}}} $ there will be four roots and in case of x or $ \dfrac{1}{x} $ there will be two roots.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you graph the function fx 4x class 9 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE