Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Solution of $\dfrac{{dx}}{{dy}} + mx = 0,{\text{ where }}m < 0$ is:
(A) $x = C{e^{my}}$ (B) $x = C{e^{ - my}}$ (C) $x = my + C$ (D) $x = C$

seo-qna
Last updated date: 25th Apr 2024
Total views: 425.1k
Views today: 4.25k
Answer
VerifiedVerified
425.1k+ views
Hint: Separate the terms containing $x$ and $y$ on either side and then integrate both sides.

Complete step-by-step answer:
According to the question, the given differential equation is $\dfrac{{dx}}{{dy}} + mx = 0$.

If we separate $x$ and $y$ terms, we’ll get:
 $
   \Rightarrow \dfrac{{dx}}{{dy}} + mx = 0, \\
   \Rightarrow \dfrac{{dx}}{{dy}} = - mx, \\
   \Rightarrow \dfrac{{dx}}{x} = - mdy \\
$
Integrating both sides, we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{x}} = - m\int {dy} ,$
We know that, $\int {\dfrac{{dx}}{x}} = \ln x$. Using this we’ll get:
$
   \Rightarrow \ln x = - my + c,{\text{ where }}c{\text{ is the constant of integration}} \\
   \Rightarrow x = {e^{ - my + c}}, \\
   \Rightarrow x = {e^c} \times {e^{ - my}}, \\
   \Rightarrow x = C{e^{ - my}}{\text{ [}}\therefore {e^c}{\text{ = C (another constant) ]}} \\
$
Thus, the solution of the given differential equation is $x = C{e^{ - my}}$. (B) is the correct option.

Note: The above differential equation is a first order differential equation. We can also solve it by calculating integrating factors. Suppose we have a first order differential equation:

$ \Rightarrow \dfrac{{dx}}{{dy}} + Px = Q,$
We calculate the integrating factor as:

$ \Rightarrow I = {e^{\int {Pdy} }}$.

The solution of the differential equation is:
$ \Rightarrow Ix = \int {IQdy} $
If we solve by this method, we’ll get the same result.
Recently Updated Pages