Solution of $\dfrac{{dx}}{{dy}} + mx = 0,{\text{ where }}m < 0$ is:
(A) $x = C{e^{my}}$ (B) $x = C{e^{ - my}}$ (C) $x = my + C$ (D) $x = C$
Answer
382.5k+ views
Hint: Separate the terms containing $x$ and $y$ on either side and then integrate both sides.
Complete step-by-step answer:
According to the question, the given differential equation is $\dfrac{{dx}}{{dy}} + mx = 0$.
If we separate $x$ and $y$ terms, we’ll get:
$
\Rightarrow \dfrac{{dx}}{{dy}} + mx = 0, \\
\Rightarrow \dfrac{{dx}}{{dy}} = - mx, \\
\Rightarrow \dfrac{{dx}}{x} = - mdy \\
$
Integrating both sides, we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{x}} = - m\int {dy} ,$
We know that, $\int {\dfrac{{dx}}{x}} = \ln x$. Using this we’ll get:
$
\Rightarrow \ln x = - my + c,{\text{ where }}c{\text{ is the constant of integration}} \\
\Rightarrow x = {e^{ - my + c}}, \\
\Rightarrow x = {e^c} \times {e^{ - my}}, \\
\Rightarrow x = C{e^{ - my}}{\text{ [}}\therefore {e^c}{\text{ = C (another constant) ]}} \\
$
Thus, the solution of the given differential equation is $x = C{e^{ - my}}$. (B) is the correct option.
Note: The above differential equation is a first order differential equation. We can also solve it by calculating integrating factors. Suppose we have a first order differential equation:
$ \Rightarrow \dfrac{{dx}}{{dy}} + Px = Q,$
We calculate the integrating factor as:
$ \Rightarrow I = {e^{\int {Pdy} }}$.
The solution of the differential equation is:
$ \Rightarrow Ix = \int {IQdy} $
If we solve by this method, we’ll get the same result.
Complete step-by-step answer:
According to the question, the given differential equation is $\dfrac{{dx}}{{dy}} + mx = 0$.
If we separate $x$ and $y$ terms, we’ll get:
$
\Rightarrow \dfrac{{dx}}{{dy}} + mx = 0, \\
\Rightarrow \dfrac{{dx}}{{dy}} = - mx, \\
\Rightarrow \dfrac{{dx}}{x} = - mdy \\
$
Integrating both sides, we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{x}} = - m\int {dy} ,$
We know that, $\int {\dfrac{{dx}}{x}} = \ln x$. Using this we’ll get:
$
\Rightarrow \ln x = - my + c,{\text{ where }}c{\text{ is the constant of integration}} \\
\Rightarrow x = {e^{ - my + c}}, \\
\Rightarrow x = {e^c} \times {e^{ - my}}, \\
\Rightarrow x = C{e^{ - my}}{\text{ [}}\therefore {e^c}{\text{ = C (another constant) ]}} \\
$
Thus, the solution of the given differential equation is $x = C{e^{ - my}}$. (B) is the correct option.
Note: The above differential equation is a first order differential equation. We can also solve it by calculating integrating factors. Suppose we have a first order differential equation:
$ \Rightarrow \dfrac{{dx}}{{dy}} + Px = Q,$
We calculate the integrating factor as:
$ \Rightarrow I = {e^{\int {Pdy} }}$.
The solution of the differential equation is:
$ \Rightarrow Ix = \int {IQdy} $
If we solve by this method, we’ll get the same result.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Which state has the longest coastline in India A Tamil class 10 social science CBSE

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE
