
Solution of $\dfrac{{dx}}{{dy}} + mx = 0,{\text{ where }}m < 0$ is:
(A) $x = C{e^{my}}$ (B) $x = C{e^{ - my}}$ (C) $x = my + C$ (D) $x = C$
Answer
604.5k+ views
Hint: Separate the terms containing $x$ and $y$ on either side and then integrate both sides.
Complete step-by-step answer:
According to the question, the given differential equation is $\dfrac{{dx}}{{dy}} + mx = 0$.
If we separate $x$ and $y$ terms, we’ll get:
$
\Rightarrow \dfrac{{dx}}{{dy}} + mx = 0, \\
\Rightarrow \dfrac{{dx}}{{dy}} = - mx, \\
\Rightarrow \dfrac{{dx}}{x} = - mdy \\
$
Integrating both sides, we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{x}} = - m\int {dy} ,$
We know that, $\int {\dfrac{{dx}}{x}} = \ln x$. Using this we’ll get:
$
\Rightarrow \ln x = - my + c,{\text{ where }}c{\text{ is the constant of integration}} \\
\Rightarrow x = {e^{ - my + c}}, \\
\Rightarrow x = {e^c} \times {e^{ - my}}, \\
\Rightarrow x = C{e^{ - my}}{\text{ [}}\therefore {e^c}{\text{ = C (another constant) ]}} \\
$
Thus, the solution of the given differential equation is $x = C{e^{ - my}}$. (B) is the correct option.
Note: The above differential equation is a first order differential equation. We can also solve it by calculating integrating factors. Suppose we have a first order differential equation:
$ \Rightarrow \dfrac{{dx}}{{dy}} + Px = Q,$
We calculate the integrating factor as:
$ \Rightarrow I = {e^{\int {Pdy} }}$.
The solution of the differential equation is:
$ \Rightarrow Ix = \int {IQdy} $
If we solve by this method, we’ll get the same result.
Complete step-by-step answer:
According to the question, the given differential equation is $\dfrac{{dx}}{{dy}} + mx = 0$.
If we separate $x$ and $y$ terms, we’ll get:
$
\Rightarrow \dfrac{{dx}}{{dy}} + mx = 0, \\
\Rightarrow \dfrac{{dx}}{{dy}} = - mx, \\
\Rightarrow \dfrac{{dx}}{x} = - mdy \\
$
Integrating both sides, we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{x}} = - m\int {dy} ,$
We know that, $\int {\dfrac{{dx}}{x}} = \ln x$. Using this we’ll get:
$
\Rightarrow \ln x = - my + c,{\text{ where }}c{\text{ is the constant of integration}} \\
\Rightarrow x = {e^{ - my + c}}, \\
\Rightarrow x = {e^c} \times {e^{ - my}}, \\
\Rightarrow x = C{e^{ - my}}{\text{ [}}\therefore {e^c}{\text{ = C (another constant) ]}} \\
$
Thus, the solution of the given differential equation is $x = C{e^{ - my}}$. (B) is the correct option.
Note: The above differential equation is a first order differential equation. We can also solve it by calculating integrating factors. Suppose we have a first order differential equation:
$ \Rightarrow \dfrac{{dx}}{{dy}} + Px = Q,$
We calculate the integrating factor as:
$ \Rightarrow I = {e^{\int {Pdy} }}$.
The solution of the differential equation is:
$ \Rightarrow Ix = \int {IQdy} $
If we solve by this method, we’ll get the same result.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

