
Slope of the straight line which is perpendicular to the straight line joining the points \[\left( { - 2,6} \right)\] and \[\left( {4,8} \right)\] is equal to:
A. \[\dfrac{1}{3}\]
B. \[3\]
C. \[ - 3\]
D. \[ - \dfrac{1}{3}\]
Answer
593.7k+ views
Hint: In this question you first find out the slope of the given two points. Then use the condition of perpendicularity to find slope of the straight line which is perpendicular to the straight line joining by the given points. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Let the given points be \[\left( {{x_1},{y_1}} \right) = \left( { - 2,6} \right)\] and \[\left( {{x_2},{y_2}} \right) = \left( {4,8} \right)\]
We know that the slope of the straight lines joining by the two points \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)\]is given by slope \[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
So, slope of the given points is \[{m_1} = \dfrac{{8 - 6}}{{4 - \left( { - 2} \right)}} = \dfrac{2}{{4 + 2}} = \dfrac{2}{6} = \dfrac{1}{3}\]
If two lines of slopes \[{m_1}{\text{ and }}{m_2}\] are perpendicular, then the condition for perpendicularity is \[{m_1}{m_2} = - 1\].
Let the slope of required line is \[{m_2}\]
By using the condition of perpendicularity we have
\[
\Rightarrow {m_1}{m_2} = - 1 \\
\Rightarrow \dfrac{1}{3}({m_2}) = - 1 \\
\Rightarrow {m_2} = - 1 \times 3 \\
\therefore {m_2} = - 3 \\
\]
Therefore, Slope of the straight line which is perpendicular to the straight line joining the points \[\left( { - 2,6} \right)\] and \[\left( {4,8} \right)\] is equal to \[ - 3\]
Thus, the correct option is C. \[ - 3\]
Note: In the given problem we need not to find the complete straight-line equation formed by joining the points \[\left( { - 2,6} \right)\] and \[\left( {4,8} \right)\]. Since we have to find only the slope, it is enough to find the slope of the straight line joining by the given points.
Complete step-by-step answer:
Let the given points be \[\left( {{x_1},{y_1}} \right) = \left( { - 2,6} \right)\] and \[\left( {{x_2},{y_2}} \right) = \left( {4,8} \right)\]
We know that the slope of the straight lines joining by the two points \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)\]is given by slope \[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
So, slope of the given points is \[{m_1} = \dfrac{{8 - 6}}{{4 - \left( { - 2} \right)}} = \dfrac{2}{{4 + 2}} = \dfrac{2}{6} = \dfrac{1}{3}\]
If two lines of slopes \[{m_1}{\text{ and }}{m_2}\] are perpendicular, then the condition for perpendicularity is \[{m_1}{m_2} = - 1\].
Let the slope of required line is \[{m_2}\]
By using the condition of perpendicularity we have
\[
\Rightarrow {m_1}{m_2} = - 1 \\
\Rightarrow \dfrac{1}{3}({m_2}) = - 1 \\
\Rightarrow {m_2} = - 1 \times 3 \\
\therefore {m_2} = - 3 \\
\]
Therefore, Slope of the straight line which is perpendicular to the straight line joining the points \[\left( { - 2,6} \right)\] and \[\left( {4,8} \right)\] is equal to \[ - 3\]
Thus, the correct option is C. \[ - 3\]
Note: In the given problem we need not to find the complete straight-line equation formed by joining the points \[\left( { - 2,6} \right)\] and \[\left( {4,8} \right)\]. Since we have to find only the slope, it is enough to find the slope of the straight line joining by the given points.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

The Vande Mataram movement was launched as a result class 10 social studies CBSE

