Answer

Verified

458.1k+ views

Hint: Think of changing or converting ‘sin’ to ‘cos’ and ‘tan’ to ‘cot’ respectively by using the identities $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $. First try to prove it by using identities

\[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\] and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$

Complete step-by-step answer:

In the given question we have to express $\left( \sin {{81}^{\circ }}+\tan {{81}^{\circ }} \right)$ in term of angles between ${{0}^{\circ }}$ and ${{45}^{\circ }}$ so that the value of expression also does not changes.

We will find out by using identity $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $ to convert the angles between ${{0}^{\circ }}$and ${{45}^{\circ }}$ .

First we will prove the identity $\sin \left( 90-\theta \right)=\cos \theta $ by using formula \[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\].

Now substituting \[A={{90}^{\circ }}\] and $B=\theta ,$ we get,

$\sin \left( 90-\theta \right)=\sin {{90}^{\circ }}\cos \theta -\cos 90\sin \theta $

Here we will put $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ we get,

$\sin \left( 90-\theta \right)=\cos \theta $

Now we will prove that identity $\tan \left( 90-\theta \right)=\cot \theta $

As we know that,

$\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$

So now we will replace $\alpha $ by $\left( 90-\theta \right)$ we get,

$\tan \left( 90-\theta \right)=\dfrac{\sin \left( 90-\theta \right)}{\cos \left( 90-\theta \right)}$

Now in this we will use identities $\sin \left( 90-\theta \right)=\cos \theta $and$\cos \left( 90-\theta \right)=\sin \theta $and substituting it we get,

$\tan \left( 90-\theta \right)=\dfrac{\cos \theta }{\sin \theta }=\cot \theta $

So now applying the identities we get,

$\begin{align}

& \sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right) \\

& =\sin \left( 90-9 \right)+\tan \left( 90-9 \right) \\

& =\cos 9+\cot 9. \\

\end{align}$

Hence, the expression $\sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right)$ can be expressed as $\cos {{9}^{\circ }}+\cot {{9}^{\circ }}$ for the angle to be in between ${{0}^{\circ }}$ and ${{45}^{\circ }}$.

So, the correct answer is option (d).

Note: Students are always in dilemma on how to approach these kinds of problems. They can do these kind of problems by using an easy method, that is just converting ‘sin’ to ‘cos’, ‘tan’ to ‘cot’ and ‘sec’ to ‘cosec’ ratios by using the identities $\sin \left( 90-\theta \right)=\cos \theta ,\tan \left( 90-\theta \right)=\cot \theta ,\sec \left( 90-\theta \right)=\csc \theta $ or vice-versa.

\[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\] and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$

Complete step-by-step answer:

In the given question we have to express $\left( \sin {{81}^{\circ }}+\tan {{81}^{\circ }} \right)$ in term of angles between ${{0}^{\circ }}$ and ${{45}^{\circ }}$ so that the value of expression also does not changes.

We will find out by using identity $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $ to convert the angles between ${{0}^{\circ }}$and ${{45}^{\circ }}$ .

First we will prove the identity $\sin \left( 90-\theta \right)=\cos \theta $ by using formula \[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\].

Now substituting \[A={{90}^{\circ }}\] and $B=\theta ,$ we get,

$\sin \left( 90-\theta \right)=\sin {{90}^{\circ }}\cos \theta -\cos 90\sin \theta $

Here we will put $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ we get,

$\sin \left( 90-\theta \right)=\cos \theta $

Now we will prove that identity $\tan \left( 90-\theta \right)=\cot \theta $

As we know that,

$\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$

So now we will replace $\alpha $ by $\left( 90-\theta \right)$ we get,

$\tan \left( 90-\theta \right)=\dfrac{\sin \left( 90-\theta \right)}{\cos \left( 90-\theta \right)}$

Now in this we will use identities $\sin \left( 90-\theta \right)=\cos \theta $and$\cos \left( 90-\theta \right)=\sin \theta $and substituting it we get,

$\tan \left( 90-\theta \right)=\dfrac{\cos \theta }{\sin \theta }=\cot \theta $

So now applying the identities we get,

$\begin{align}

& \sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right) \\

& =\sin \left( 90-9 \right)+\tan \left( 90-9 \right) \\

& =\cos 9+\cot 9. \\

\end{align}$

Hence, the expression $\sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right)$ can be expressed as $\cos {{9}^{\circ }}+\cot {{9}^{\circ }}$ for the angle to be in between ${{0}^{\circ }}$ and ${{45}^{\circ }}$.

So, the correct answer is option (d).

Note: Students are always in dilemma on how to approach these kinds of problems. They can do these kind of problems by using an easy method, that is just converting ‘sin’ to ‘cos’, ‘tan’ to ‘cot’ and ‘sec’ to ‘cosec’ ratios by using the identities $\sin \left( 90-\theta \right)=\cos \theta ,\tan \left( 90-\theta \right)=\cot \theta ,\sec \left( 90-\theta \right)=\csc \theta $ or vice-versa.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Write a letter to the principal requesting him to grant class 10 english CBSE