Answer
Verified
493.2k+ views
Hint: Think of changing or converting ‘sin’ to ‘cos’ and ‘tan’ to ‘cot’ respectively by using the identities $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $. First try to prove it by using identities
\[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\] and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step-by-step answer:
In the given question we have to express $\left( \sin {{81}^{\circ }}+\tan {{81}^{\circ }} \right)$ in term of angles between ${{0}^{\circ }}$ and ${{45}^{\circ }}$ so that the value of expression also does not changes.
We will find out by using identity $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $ to convert the angles between ${{0}^{\circ }}$and ${{45}^{\circ }}$ .
First we will prove the identity $\sin \left( 90-\theta \right)=\cos \theta $ by using formula \[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\].
Now substituting \[A={{90}^{\circ }}\] and $B=\theta ,$ we get,
$\sin \left( 90-\theta \right)=\sin {{90}^{\circ }}\cos \theta -\cos 90\sin \theta $
Here we will put $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ we get,
$\sin \left( 90-\theta \right)=\cos \theta $
Now we will prove that identity $\tan \left( 90-\theta \right)=\cot \theta $
As we know that,
$\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$
So now we will replace $\alpha $ by $\left( 90-\theta \right)$ we get,
$\tan \left( 90-\theta \right)=\dfrac{\sin \left( 90-\theta \right)}{\cos \left( 90-\theta \right)}$
Now in this we will use identities $\sin \left( 90-\theta \right)=\cos \theta $and$\cos \left( 90-\theta \right)=\sin \theta $and substituting it we get,
$\tan \left( 90-\theta \right)=\dfrac{\cos \theta }{\sin \theta }=\cot \theta $
So now applying the identities we get,
$\begin{align}
& \sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right) \\
& =\sin \left( 90-9 \right)+\tan \left( 90-9 \right) \\
& =\cos 9+\cot 9. \\
\end{align}$
Hence, the expression $\sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right)$ can be expressed as $\cos {{9}^{\circ }}+\cot {{9}^{\circ }}$ for the angle to be in between ${{0}^{\circ }}$ and ${{45}^{\circ }}$.
So, the correct answer is option (d).
Note: Students are always in dilemma on how to approach these kinds of problems. They can do these kind of problems by using an easy method, that is just converting ‘sin’ to ‘cos’, ‘tan’ to ‘cot’ and ‘sec’ to ‘cosec’ ratios by using the identities $\sin \left( 90-\theta \right)=\cos \theta ,\tan \left( 90-\theta \right)=\cot \theta ,\sec \left( 90-\theta \right)=\csc \theta $ or vice-versa.
\[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\] and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step-by-step answer:
In the given question we have to express $\left( \sin {{81}^{\circ }}+\tan {{81}^{\circ }} \right)$ in term of angles between ${{0}^{\circ }}$ and ${{45}^{\circ }}$ so that the value of expression also does not changes.
We will find out by using identity $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $ to convert the angles between ${{0}^{\circ }}$and ${{45}^{\circ }}$ .
First we will prove the identity $\sin \left( 90-\theta \right)=\cos \theta $ by using formula \[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\].
Now substituting \[A={{90}^{\circ }}\] and $B=\theta ,$ we get,
$\sin \left( 90-\theta \right)=\sin {{90}^{\circ }}\cos \theta -\cos 90\sin \theta $
Here we will put $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ we get,
$\sin \left( 90-\theta \right)=\cos \theta $
Now we will prove that identity $\tan \left( 90-\theta \right)=\cot \theta $
As we know that,
$\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$
So now we will replace $\alpha $ by $\left( 90-\theta \right)$ we get,
$\tan \left( 90-\theta \right)=\dfrac{\sin \left( 90-\theta \right)}{\cos \left( 90-\theta \right)}$
Now in this we will use identities $\sin \left( 90-\theta \right)=\cos \theta $and$\cos \left( 90-\theta \right)=\sin \theta $and substituting it we get,
$\tan \left( 90-\theta \right)=\dfrac{\cos \theta }{\sin \theta }=\cot \theta $
So now applying the identities we get,
$\begin{align}
& \sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right) \\
& =\sin \left( 90-9 \right)+\tan \left( 90-9 \right) \\
& =\cos 9+\cot 9. \\
\end{align}$
Hence, the expression $\sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right)$ can be expressed as $\cos {{9}^{\circ }}+\cot {{9}^{\circ }}$ for the angle to be in between ${{0}^{\circ }}$ and ${{45}^{\circ }}$.
So, the correct answer is option (d).
Note: Students are always in dilemma on how to approach these kinds of problems. They can do these kind of problems by using an easy method, that is just converting ‘sin’ to ‘cos’, ‘tan’ to ‘cot’ and ‘sec’ to ‘cosec’ ratios by using the identities $\sin \left( 90-\theta \right)=\cos \theta ,\tan \left( 90-\theta \right)=\cot \theta ,\sec \left( 90-\theta \right)=\csc \theta $ or vice-versa.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE