$\sin {{81}^{\circ }}+\tan {{81}^{\circ }}$, when expressed in terms of angles between ${{0}^{\circ }}$ and ${{45}^{\circ }}$, becomes
(a) $\sin {{9}^{\circ }}+\cos {{9}^{\circ }}$
(b) $cos{{9}^{\circ }}+\tan {{9}^{\circ }}$
(c) $\sin {{9}^{\circ }}+\tan {{9}^{\circ }}$
(d) $cos{{9}^{\circ }}+\cot {{9}^{\circ }}$
Last updated date: 27th Mar 2023
•
Total views: 307.5k
•
Views today: 2.84k
Answer
307.5k+ views
Hint: Think of changing or converting ‘sin’ to ‘cos’ and ‘tan’ to ‘cot’ respectively by using the identities $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $. First try to prove it by using identities
\[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\] and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step-by-step answer:
In the given question we have to express $\left( \sin {{81}^{\circ }}+\tan {{81}^{\circ }} \right)$ in term of angles between ${{0}^{\circ }}$ and ${{45}^{\circ }}$ so that the value of expression also does not changes.
We will find out by using identity $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $ to convert the angles between ${{0}^{\circ }}$and ${{45}^{\circ }}$ .
First we will prove the identity $\sin \left( 90-\theta \right)=\cos \theta $ by using formula \[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\].
Now substituting \[A={{90}^{\circ }}\] and $B=\theta ,$ we get,
$\sin \left( 90-\theta \right)=\sin {{90}^{\circ }}\cos \theta -\cos 90\sin \theta $
Here we will put $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ we get,
$\sin \left( 90-\theta \right)=\cos \theta $
Now we will prove that identity $\tan \left( 90-\theta \right)=\cot \theta $
As we know that,
$\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$
So now we will replace $\alpha $ by $\left( 90-\theta \right)$ we get,
$\tan \left( 90-\theta \right)=\dfrac{\sin \left( 90-\theta \right)}{\cos \left( 90-\theta \right)}$
Now in this we will use identities $\sin \left( 90-\theta \right)=\cos \theta $and$\cos \left( 90-\theta \right)=\sin \theta $and substituting it we get,
$\tan \left( 90-\theta \right)=\dfrac{\cos \theta }{\sin \theta }=\cot \theta $
So now applying the identities we get,
$\begin{align}
& \sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right) \\
& =\sin \left( 90-9 \right)+\tan \left( 90-9 \right) \\
& =\cos 9+\cot 9. \\
\end{align}$
Hence, the expression $\sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right)$ can be expressed as $\cos {{9}^{\circ }}+\cot {{9}^{\circ }}$ for the angle to be in between ${{0}^{\circ }}$ and ${{45}^{\circ }}$.
So, the correct answer is option (d).
Note: Students are always in dilemma on how to approach these kinds of problems. They can do these kind of problems by using an easy method, that is just converting ‘sin’ to ‘cos’, ‘tan’ to ‘cot’ and ‘sec’ to ‘cosec’ ratios by using the identities $\sin \left( 90-\theta \right)=\cos \theta ,\tan \left( 90-\theta \right)=\cot \theta ,\sec \left( 90-\theta \right)=\csc \theta $ or vice-versa.
\[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\] and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step-by-step answer:
In the given question we have to express $\left( \sin {{81}^{\circ }}+\tan {{81}^{\circ }} \right)$ in term of angles between ${{0}^{\circ }}$ and ${{45}^{\circ }}$ so that the value of expression also does not changes.
We will find out by using identity $\sin \left( 90-\theta \right)=\cos \theta $ and $\tan \left( 90-\theta \right)=\cot \theta $ to convert the angles between ${{0}^{\circ }}$and ${{45}^{\circ }}$ .
First we will prove the identity $\sin \left( 90-\theta \right)=\cos \theta $ by using formula \[\sin \left( A-B \right)\text{ }=\sin A\cos B\cos A\sin B\].
Now substituting \[A={{90}^{\circ }}\] and $B=\theta ,$ we get,
$\sin \left( 90-\theta \right)=\sin {{90}^{\circ }}\cos \theta -\cos 90\sin \theta $
Here we will put $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ we get,
$\sin \left( 90-\theta \right)=\cos \theta $
Now we will prove that identity $\tan \left( 90-\theta \right)=\cot \theta $
As we know that,
$\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$
So now we will replace $\alpha $ by $\left( 90-\theta \right)$ we get,
$\tan \left( 90-\theta \right)=\dfrac{\sin \left( 90-\theta \right)}{\cos \left( 90-\theta \right)}$
Now in this we will use identities $\sin \left( 90-\theta \right)=\cos \theta $and$\cos \left( 90-\theta \right)=\sin \theta $and substituting it we get,
$\tan \left( 90-\theta \right)=\dfrac{\cos \theta }{\sin \theta }=\cot \theta $
So now applying the identities we get,
$\begin{align}
& \sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right) \\
& =\sin \left( 90-9 \right)+\tan \left( 90-9 \right) \\
& =\cos 9+\cot 9. \\
\end{align}$
Hence, the expression $\sin \left( {{81}^{\circ }} \right)+\tan \left( {{81}^{\circ }} \right)$ can be expressed as $\cos {{9}^{\circ }}+\cot {{9}^{\circ }}$ for the angle to be in between ${{0}^{\circ }}$ and ${{45}^{\circ }}$.
So, the correct answer is option (d).
Note: Students are always in dilemma on how to approach these kinds of problems. They can do these kind of problems by using an easy method, that is just converting ‘sin’ to ‘cos’, ‘tan’ to ‘cot’ and ‘sec’ to ‘cosec’ ratios by using the identities $\sin \left( 90-\theta \right)=\cos \theta ,\tan \left( 90-\theta \right)=\cot \theta ,\sec \left( 90-\theta \right)=\csc \theta $ or vice-versa.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
