
How do you simplify the quadratic formula?
Answer
540.3k+ views
Hint: The quadratic formula is used for obtaining the solutions of a quadratic equation, or the roots of a quadratic polynomial. It is given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where $a$ is the coefficient of ${{x}^{2}}$, $b$ is the coefficient of $x$, and $c$ is the constant term of a quadratic equation. Or equivalently, it gives the solution of the quadratic equation $a{{x}^{2}}+bx+c=0$. The quadratic formula given above is already completely simplified algebraically. So we have to consider some special cases for some particular values of the coefficients.
Complete step by step answer:
We know that the quadratic formula is used for obtaining the solutions of a quadratic equation, or the roots of a quadratic polynomial. It is given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where $a$ is the coefficient of ${{x}^{2}}$, $b$ is the coefficient of $x$, and $c$ is the constant term of a quadratic equation $a{{x}^{2}}+bx+c=0$.
Now, the formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] is already simplified algebraically, so no algebraic operation can be performed for the simplification. But we can consider some of the special conditions for the values of the coefficients $a,b$ and $c$.
(i) The coefficient $b$ is an even number:
We know that every even number can be written in the form $b=2n$, where $n$ is some number. Therefore substituting $b=2n$ in the quadratic formula we get
\[\begin{align}
& \Rightarrow x=\dfrac{-2n\pm \sqrt{{{\left( 2n \right)}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm \sqrt{4{{n}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm 2\sqrt{{{n}^{2}}-ac}}{2a} \\
& \Rightarrow x=\dfrac{-n\pm \sqrt{{{n}^{2}}-ac}}{a} \\
\end{align}\]
Further, if the coefficient $a=1$ then in more simplified manner we can write the quadratic formula as
\[\Rightarrow x=-n\pm \sqrt{{{n}^{2}}-c}\]
Hence, this the required simplified form of the quadratic formula.
Note:
We can also simplify the quadratic formula by considering the case of repeated and imaginary roots. But those simplified versions of the formula will belong to the category of the particular cases only. So we have not considered these in the above solution.
Complete step by step answer:
We know that the quadratic formula is used for obtaining the solutions of a quadratic equation, or the roots of a quadratic polynomial. It is given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where $a$ is the coefficient of ${{x}^{2}}$, $b$ is the coefficient of $x$, and $c$ is the constant term of a quadratic equation $a{{x}^{2}}+bx+c=0$.
Now, the formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] is already simplified algebraically, so no algebraic operation can be performed for the simplification. But we can consider some of the special conditions for the values of the coefficients $a,b$ and $c$.
(i) The coefficient $b$ is an even number:
We know that every even number can be written in the form $b=2n$, where $n$ is some number. Therefore substituting $b=2n$ in the quadratic formula we get
\[\begin{align}
& \Rightarrow x=\dfrac{-2n\pm \sqrt{{{\left( 2n \right)}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm \sqrt{4{{n}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm 2\sqrt{{{n}^{2}}-ac}}{2a} \\
& \Rightarrow x=\dfrac{-n\pm \sqrt{{{n}^{2}}-ac}}{a} \\
\end{align}\]
Further, if the coefficient $a=1$ then in more simplified manner we can write the quadratic formula as
\[\Rightarrow x=-n\pm \sqrt{{{n}^{2}}-c}\]
Hence, this the required simplified form of the quadratic formula.
Note:
We can also simplify the quadratic formula by considering the case of repeated and imaginary roots. But those simplified versions of the formula will belong to the category of the particular cases only. So we have not considered these in the above solution.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

