How do you simplify the quadratic formula?
Answer
Verified
440.4k+ views
Hint: The quadratic formula is used for obtaining the solutions of a quadratic equation, or the roots of a quadratic polynomial. It is given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where $a$ is the coefficient of ${{x}^{2}}$, $b$ is the coefficient of $x$, and $c$ is the constant term of a quadratic equation. Or equivalently, it gives the solution of the quadratic equation $a{{x}^{2}}+bx+c=0$. The quadratic formula given above is already completely simplified algebraically. So we have to consider some special cases for some particular values of the coefficients.
Complete step by step answer:
We know that the quadratic formula is used for obtaining the solutions of a quadratic equation, or the roots of a quadratic polynomial. It is given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where $a$ is the coefficient of ${{x}^{2}}$, $b$ is the coefficient of $x$, and $c$ is the constant term of a quadratic equation $a{{x}^{2}}+bx+c=0$.
Now, the formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] is already simplified algebraically, so no algebraic operation can be performed for the simplification. But we can consider some of the special conditions for the values of the coefficients $a,b$ and $c$.
(i) The coefficient $b$ is an even number:
We know that every even number can be written in the form $b=2n$, where $n$ is some number. Therefore substituting $b=2n$ in the quadratic formula we get
\[\begin{align}
& \Rightarrow x=\dfrac{-2n\pm \sqrt{{{\left( 2n \right)}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm \sqrt{4{{n}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm 2\sqrt{{{n}^{2}}-ac}}{2a} \\
& \Rightarrow x=\dfrac{-n\pm \sqrt{{{n}^{2}}-ac}}{a} \\
\end{align}\]
Further, if the coefficient $a=1$ then in more simplified manner we can write the quadratic formula as
\[\Rightarrow x=-n\pm \sqrt{{{n}^{2}}-c}\]
Hence, this the required simplified form of the quadratic formula.
Note:
We can also simplify the quadratic formula by considering the case of repeated and imaginary roots. But those simplified versions of the formula will belong to the category of the particular cases only. So we have not considered these in the above solution.
Complete step by step answer:
We know that the quadratic formula is used for obtaining the solutions of a quadratic equation, or the roots of a quadratic polynomial. It is given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where $a$ is the coefficient of ${{x}^{2}}$, $b$ is the coefficient of $x$, and $c$ is the constant term of a quadratic equation $a{{x}^{2}}+bx+c=0$.
Now, the formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] is already simplified algebraically, so no algebraic operation can be performed for the simplification. But we can consider some of the special conditions for the values of the coefficients $a,b$ and $c$.
(i) The coefficient $b$ is an even number:
We know that every even number can be written in the form $b=2n$, where $n$ is some number. Therefore substituting $b=2n$ in the quadratic formula we get
\[\begin{align}
& \Rightarrow x=\dfrac{-2n\pm \sqrt{{{\left( 2n \right)}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm \sqrt{4{{n}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm 2\sqrt{{{n}^{2}}-ac}}{2a} \\
& \Rightarrow x=\dfrac{-n\pm \sqrt{{{n}^{2}}-ac}}{a} \\
\end{align}\]
Further, if the coefficient $a=1$ then in more simplified manner we can write the quadratic formula as
\[\Rightarrow x=-n\pm \sqrt{{{n}^{2}}-c}\]
Hence, this the required simplified form of the quadratic formula.
Note:
We can also simplify the quadratic formula by considering the case of repeated and imaginary roots. But those simplified versions of the formula will belong to the category of the particular cases only. So we have not considered these in the above solution.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Find the mode of the data using an empirical formula class 10 maths CBSE
Compare and contrast a weekly market and a shopping class 10 social science CBSE