Answer
Verified
406.8k+ views
Hint: The quadratic formula is used for obtaining the solutions of a quadratic equation, or the roots of a quadratic polynomial. It is given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where $a$ is the coefficient of ${{x}^{2}}$, $b$ is the coefficient of $x$, and $c$ is the constant term of a quadratic equation. Or equivalently, it gives the solution of the quadratic equation $a{{x}^{2}}+bx+c=0$. The quadratic formula given above is already completely simplified algebraically. So we have to consider some special cases for some particular values of the coefficients.
Complete step by step answer:
We know that the quadratic formula is used for obtaining the solutions of a quadratic equation, or the roots of a quadratic polynomial. It is given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where $a$ is the coefficient of ${{x}^{2}}$, $b$ is the coefficient of $x$, and $c$ is the constant term of a quadratic equation $a{{x}^{2}}+bx+c=0$.
Now, the formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] is already simplified algebraically, so no algebraic operation can be performed for the simplification. But we can consider some of the special conditions for the values of the coefficients $a,b$ and $c$.
(i) The coefficient $b$ is an even number:
We know that every even number can be written in the form $b=2n$, where $n$ is some number. Therefore substituting $b=2n$ in the quadratic formula we get
\[\begin{align}
& \Rightarrow x=\dfrac{-2n\pm \sqrt{{{\left( 2n \right)}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm \sqrt{4{{n}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm 2\sqrt{{{n}^{2}}-ac}}{2a} \\
& \Rightarrow x=\dfrac{-n\pm \sqrt{{{n}^{2}}-ac}}{a} \\
\end{align}\]
Further, if the coefficient $a=1$ then in more simplified manner we can write the quadratic formula as
\[\Rightarrow x=-n\pm \sqrt{{{n}^{2}}-c}\]
Hence, this the required simplified form of the quadratic formula.
Note:
We can also simplify the quadratic formula by considering the case of repeated and imaginary roots. But those simplified versions of the formula will belong to the category of the particular cases only. So we have not considered these in the above solution.
Complete step by step answer:
We know that the quadratic formula is used for obtaining the solutions of a quadratic equation, or the roots of a quadratic polynomial. It is given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where $a$ is the coefficient of ${{x}^{2}}$, $b$ is the coefficient of $x$, and $c$ is the constant term of a quadratic equation $a{{x}^{2}}+bx+c=0$.
Now, the formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] is already simplified algebraically, so no algebraic operation can be performed for the simplification. But we can consider some of the special conditions for the values of the coefficients $a,b$ and $c$.
(i) The coefficient $b$ is an even number:
We know that every even number can be written in the form $b=2n$, where $n$ is some number. Therefore substituting $b=2n$ in the quadratic formula we get
\[\begin{align}
& \Rightarrow x=\dfrac{-2n\pm \sqrt{{{\left( 2n \right)}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm \sqrt{4{{n}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-2n\pm 2\sqrt{{{n}^{2}}-ac}}{2a} \\
& \Rightarrow x=\dfrac{-n\pm \sqrt{{{n}^{2}}-ac}}{a} \\
\end{align}\]
Further, if the coefficient $a=1$ then in more simplified manner we can write the quadratic formula as
\[\Rightarrow x=-n\pm \sqrt{{{n}^{2}}-c}\]
Hence, this the required simplified form of the quadratic formula.
Note:
We can also simplify the quadratic formula by considering the case of repeated and imaginary roots. But those simplified versions of the formula will belong to the category of the particular cases only. So we have not considered these in the above solution.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths