Courses
Courses for Kids
Free study material
Free LIVE classes
More
Questions & Answers
seo-qna
LIVE
Join Vedantu’s FREE Mastercalss

Simplify the following algebraic term:
$
  \left( {1 + {{\tan }^2}\theta } \right).{\sin ^2}\theta = \\
  A.{\text{ }}{\sin ^2}\theta \\
  B.{\text{ }}{\cos ^2}\theta \\
  C.{\text{ }}{\tan ^2}\theta \\
  D.{\text{ }}{\cot ^2}\theta \\
 $

Answer
VerifiedVerified
363.9k+ views
Hint- For solving, use simple trigonometric identities and formulas.

Since we know that ${\text{se}}{{\text{c}}^2}\theta - {\tan ^2}\theta = 1$
$ \Rightarrow {\text{se}}{{\text{c}}^2}\theta = 1 + {\tan ^2}\theta $
Substituting the above equation in the give question,
Now the question becomes$\left[ {{\text{se}}{{\text{c}}^2}\theta } \right].{\sin ^2}\theta $
Further simplifying the trigonometric terms
$
   \Rightarrow {\left[ {\sec \theta .\sin \theta } \right]^2} \\
   \Rightarrow {\left[ {\dfrac{1}{{\cos \theta }}.\sin \theta } \right]^2} \\
   \Rightarrow {\left[ {\tan \theta } \right]^2}\because \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \\
   \Rightarrow {\tan ^2}\theta \\
$
Hence, the correct option is $C$

Note- Use Simple trigonometric formulas which are mentioned above along with the solution. These formulas must be remembered. Always try to reduce the equation by the use of trigonometric identities which further reduces the equation.
Last updated date: 18th Sep 2023
•
Total views: 363.9k
•
Views today: 9.63k