Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Simplify the following algebraic term:
$
  \left( {1 + {{\tan }^2}\theta } \right).{\sin ^2}\theta = \\
  A.{\text{ }}{\sin ^2}\theta \\
  B.{\text{ }}{\cos ^2}\theta \\
  C.{\text{ }}{\tan ^2}\theta \\
  D.{\text{ }}{\cot ^2}\theta \\
 $

seo-qna
Last updated date: 19th Jul 2024
Total views: 453.6k
Views today: 12.53k
Answer
VerifiedVerified
453.6k+ views
Hint- For solving, use simple trigonometric identities and formulas.

Since we know that ${\text{se}}{{\text{c}}^2}\theta - {\tan ^2}\theta = 1$
$ \Rightarrow {\text{se}}{{\text{c}}^2}\theta = 1 + {\tan ^2}\theta $
Substituting the above equation in the give question,
Now the question becomes$\left[ {{\text{se}}{{\text{c}}^2}\theta } \right].{\sin ^2}\theta $
Further simplifying the trigonometric terms
$
   \Rightarrow {\left[ {\sec \theta .\sin \theta } \right]^2} \\
   \Rightarrow {\left[ {\dfrac{1}{{\cos \theta }}.\sin \theta } \right]^2} \\
   \Rightarrow {\left[ {\tan \theta } \right]^2}\because \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \\
   \Rightarrow {\tan ^2}\theta \\
$
Hence, the correct option is $C$

Note- Use Simple trigonometric formulas which are mentioned above along with the solution. These formulas must be remembered. Always try to reduce the equation by the use of trigonometric identities which further reduces the equation.