Simplify the expression which is given by \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\].
Answer
361.5k+ views
Hint- Here, we will proceed by using the concepts that when two numbers having the same bases are multiplied and divided, their powers will be added and subtracted respectively in order to simplify the given expression.
Complete step-by-step answer:
Let us denote the given expression by a i.e., \[a = {\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\]
\[
\Rightarrow a = \dfrac{{{{\left( {2{x^3}{y^2}} \right)}^4}}}{{{{\left( {3{x^2}{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \dfrac{{{{\left( 2 \right)}^4}{{\left( {{x^3}} \right)}^4}{{\left( {{y^2}} \right)}^4}}}{{{{\left( 3 \right)}^4}{{\left( {{x^2}} \right)}^4}{{\left( {{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that for any number a, \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\]
Also, \[{\left( 2 \right)^4} = 16\] and \[{\left( 3 \right)^4} = 81\]
By using the formula \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\] and putting \[{\left( 2 \right)^4} = 16\], \[{\left( 3 \right)^4} = 81\], equation (1) becomes
\[
\Rightarrow a = \left( {\dfrac{{16{x^{3 \times 4}}{y^{2 \times 4}}}}{{81{x^{2 \times 4}}{y^{5 \times 4}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left( {\dfrac{{16{x^{12}}{y^8}}}{{81{x^8}{y^{20}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left[ {\dfrac{{\left( {16{x^{12}}{y^8}} \right)\left( {{x^2}{y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( {12} \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12}} \times {x^2}} \right)\left( {{y^8} \times {y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right]{\text{ }} \to {\text{(2)}} \\
\]
Also we know that when two numbers such that their bases are same are multiplied with each other then, their powers will be added i.e., ${a^b} \times {a^c} = {a^{b + c}}$.
Using the above concept, equation (2) becomes
\[
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12 + 2}}} \right)\left( {{y^{8 + 2}}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{14}}} \right)\left( {{y^{10}}} \right)}}{{243{x^8}{y^{20}}}}} \right] \\
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {\dfrac{{{x^{14}}}}{{{x^8}}}} \right)\left( {\dfrac{{{y^{10}}}}{{{y^{20}}}}} \right)} \right]{\text{ }} \to {\text{(3)}} \\
\]
Also we know that when two numbers such that their bases are same are divided then, their powers will be subtracted i.e., $\left( {\dfrac{{{a^b}}}{{{a^c}}}} \right) = {a^{b - c}}$.
Using the above concept, equation (3) becomes
\[
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {{x^{14 - 8}}} \right)\left( {{y^{10 - 20}}} \right)} \right] \\
\Rightarrow a = \left( {\dfrac{4}{{243}}} \right)\left( {{x^6}} \right)\left( {{y^{ - 10}}} \right) \\
\Rightarrow a = \dfrac{{4{x^6}}}{{243{y^{10}}}} \\
\]
Therefore, the given expression \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\] is simplified to \[\dfrac{{4{x^6}}}{{243{y^{10}}}}\].
Note- In this particular problem, \[\left( {{x^{12}} \times {x^2}} \right) = {x^{14}}\] because here both the terms \[{x^{12}}\] and \[{x^2}\] have the same base (i.e., x) and are multiplied with each other so their powers will be added. Also, \[\left( {{y^8} \times {y^2}} \right) = {y^{10}}\] because here both the terms \[{y^8}\] and \[{y^2}\] have the same base (i.e., y) and are multiplied with each other so their powers will be added.
Complete step-by-step answer:
Let us denote the given expression by a i.e., \[a = {\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\]
\[
\Rightarrow a = \dfrac{{{{\left( {2{x^3}{y^2}} \right)}^4}}}{{{{\left( {3{x^2}{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \dfrac{{{{\left( 2 \right)}^4}{{\left( {{x^3}} \right)}^4}{{\left( {{y^2}} \right)}^4}}}{{{{\left( 3 \right)}^4}{{\left( {{x^2}} \right)}^4}{{\left( {{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that for any number a, \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\]
Also, \[{\left( 2 \right)^4} = 16\] and \[{\left( 3 \right)^4} = 81\]
By using the formula \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\] and putting \[{\left( 2 \right)^4} = 16\], \[{\left( 3 \right)^4} = 81\], equation (1) becomes
\[
\Rightarrow a = \left( {\dfrac{{16{x^{3 \times 4}}{y^{2 \times 4}}}}{{81{x^{2 \times 4}}{y^{5 \times 4}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left( {\dfrac{{16{x^{12}}{y^8}}}{{81{x^8}{y^{20}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left[ {\dfrac{{\left( {16{x^{12}}{y^8}} \right)\left( {{x^2}{y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( {12} \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12}} \times {x^2}} \right)\left( {{y^8} \times {y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right]{\text{ }} \to {\text{(2)}} \\
\]
Also we know that when two numbers such that their bases are same are multiplied with each other then, their powers will be added i.e., ${a^b} \times {a^c} = {a^{b + c}}$.
Using the above concept, equation (2) becomes
\[
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12 + 2}}} \right)\left( {{y^{8 + 2}}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{14}}} \right)\left( {{y^{10}}} \right)}}{{243{x^8}{y^{20}}}}} \right] \\
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {\dfrac{{{x^{14}}}}{{{x^8}}}} \right)\left( {\dfrac{{{y^{10}}}}{{{y^{20}}}}} \right)} \right]{\text{ }} \to {\text{(3)}} \\
\]
Also we know that when two numbers such that their bases are same are divided then, their powers will be subtracted i.e., $\left( {\dfrac{{{a^b}}}{{{a^c}}}} \right) = {a^{b - c}}$.
Using the above concept, equation (3) becomes
\[
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {{x^{14 - 8}}} \right)\left( {{y^{10 - 20}}} \right)} \right] \\
\Rightarrow a = \left( {\dfrac{4}{{243}}} \right)\left( {{x^6}} \right)\left( {{y^{ - 10}}} \right) \\
\Rightarrow a = \dfrac{{4{x^6}}}{{243{y^{10}}}} \\
\]
Therefore, the given expression \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\] is simplified to \[\dfrac{{4{x^6}}}{{243{y^{10}}}}\].
Note- In this particular problem, \[\left( {{x^{12}} \times {x^2}} \right) = {x^{14}}\] because here both the terms \[{x^{12}}\] and \[{x^2}\] have the same base (i.e., x) and are multiplied with each other so their powers will be added. Also, \[\left( {{y^8} \times {y^2}} \right) = {y^{10}}\] because here both the terms \[{y^8}\] and \[{y^2}\] have the same base (i.e., y) and are multiplied with each other so their powers will be added.
Last updated date: 30th Sep 2023
•
Total views: 361.5k
•
Views today: 10.61k
Recently Updated Pages
What do you mean by public facilities

Please Write an Essay on Disaster Management

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE
