
Simplify the expression which is given by \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\].
Answer
619.2k+ views
Hint- Here, we will proceed by using the concepts that when two numbers having the same bases are multiplied and divided, their powers will be added and subtracted respectively in order to simplify the given expression.
Complete step-by-step answer:
Let us denote the given expression by a i.e., \[a = {\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\]
\[
\Rightarrow a = \dfrac{{{{\left( {2{x^3}{y^2}} \right)}^4}}}{{{{\left( {3{x^2}{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \dfrac{{{{\left( 2 \right)}^4}{{\left( {{x^3}} \right)}^4}{{\left( {{y^2}} \right)}^4}}}{{{{\left( 3 \right)}^4}{{\left( {{x^2}} \right)}^4}{{\left( {{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that for any number a, \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\]
Also, \[{\left( 2 \right)^4} = 16\] and \[{\left( 3 \right)^4} = 81\]
By using the formula \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\] and putting \[{\left( 2 \right)^4} = 16\], \[{\left( 3 \right)^4} = 81\], equation (1) becomes
\[
\Rightarrow a = \left( {\dfrac{{16{x^{3 \times 4}}{y^{2 \times 4}}}}{{81{x^{2 \times 4}}{y^{5 \times 4}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left( {\dfrac{{16{x^{12}}{y^8}}}{{81{x^8}{y^{20}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left[ {\dfrac{{\left( {16{x^{12}}{y^8}} \right)\left( {{x^2}{y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( {12} \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12}} \times {x^2}} \right)\left( {{y^8} \times {y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right]{\text{ }} \to {\text{(2)}} \\
\]
Also we know that when two numbers such that their bases are same are multiplied with each other then, their powers will be added i.e., ${a^b} \times {a^c} = {a^{b + c}}$.
Using the above concept, equation (2) becomes
\[
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12 + 2}}} \right)\left( {{y^{8 + 2}}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{14}}} \right)\left( {{y^{10}}} \right)}}{{243{x^8}{y^{20}}}}} \right] \\
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {\dfrac{{{x^{14}}}}{{{x^8}}}} \right)\left( {\dfrac{{{y^{10}}}}{{{y^{20}}}}} \right)} \right]{\text{ }} \to {\text{(3)}} \\
\]
Also we know that when two numbers such that their bases are same are divided then, their powers will be subtracted i.e., $\left( {\dfrac{{{a^b}}}{{{a^c}}}} \right) = {a^{b - c}}$.
Using the above concept, equation (3) becomes
\[
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {{x^{14 - 8}}} \right)\left( {{y^{10 - 20}}} \right)} \right] \\
\Rightarrow a = \left( {\dfrac{4}{{243}}} \right)\left( {{x^6}} \right)\left( {{y^{ - 10}}} \right) \\
\Rightarrow a = \dfrac{{4{x^6}}}{{243{y^{10}}}} \\
\]
Therefore, the given expression \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\] is simplified to \[\dfrac{{4{x^6}}}{{243{y^{10}}}}\].
Note- In this particular problem, \[\left( {{x^{12}} \times {x^2}} \right) = {x^{14}}\] because here both the terms \[{x^{12}}\] and \[{x^2}\] have the same base (i.e., x) and are multiplied with each other so their powers will be added. Also, \[\left( {{y^8} \times {y^2}} \right) = {y^{10}}\] because here both the terms \[{y^8}\] and \[{y^2}\] have the same base (i.e., y) and are multiplied with each other so their powers will be added.
Complete step-by-step answer:
Let us denote the given expression by a i.e., \[a = {\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\]
\[
\Rightarrow a = \dfrac{{{{\left( {2{x^3}{y^2}} \right)}^4}}}{{{{\left( {3{x^2}{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \dfrac{{{{\left( 2 \right)}^4}{{\left( {{x^3}} \right)}^4}{{\left( {{y^2}} \right)}^4}}}{{{{\left( 3 \right)}^4}{{\left( {{x^2}} \right)}^4}{{\left( {{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that for any number a, \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\]
Also, \[{\left( 2 \right)^4} = 16\] and \[{\left( 3 \right)^4} = 81\]
By using the formula \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\] and putting \[{\left( 2 \right)^4} = 16\], \[{\left( 3 \right)^4} = 81\], equation (1) becomes
\[
\Rightarrow a = \left( {\dfrac{{16{x^{3 \times 4}}{y^{2 \times 4}}}}{{81{x^{2 \times 4}}{y^{5 \times 4}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left( {\dfrac{{16{x^{12}}{y^8}}}{{81{x^8}{y^{20}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left[ {\dfrac{{\left( {16{x^{12}}{y^8}} \right)\left( {{x^2}{y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( {12} \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12}} \times {x^2}} \right)\left( {{y^8} \times {y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right]{\text{ }} \to {\text{(2)}} \\
\]
Also we know that when two numbers such that their bases are same are multiplied with each other then, their powers will be added i.e., ${a^b} \times {a^c} = {a^{b + c}}$.
Using the above concept, equation (2) becomes
\[
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12 + 2}}} \right)\left( {{y^{8 + 2}}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{14}}} \right)\left( {{y^{10}}} \right)}}{{243{x^8}{y^{20}}}}} \right] \\
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {\dfrac{{{x^{14}}}}{{{x^8}}}} \right)\left( {\dfrac{{{y^{10}}}}{{{y^{20}}}}} \right)} \right]{\text{ }} \to {\text{(3)}} \\
\]
Also we know that when two numbers such that their bases are same are divided then, their powers will be subtracted i.e., $\left( {\dfrac{{{a^b}}}{{{a^c}}}} \right) = {a^{b - c}}$.
Using the above concept, equation (3) becomes
\[
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {{x^{14 - 8}}} \right)\left( {{y^{10 - 20}}} \right)} \right] \\
\Rightarrow a = \left( {\dfrac{4}{{243}}} \right)\left( {{x^6}} \right)\left( {{y^{ - 10}}} \right) \\
\Rightarrow a = \dfrac{{4{x^6}}}{{243{y^{10}}}} \\
\]
Therefore, the given expression \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\] is simplified to \[\dfrac{{4{x^6}}}{{243{y^{10}}}}\].
Note- In this particular problem, \[\left( {{x^{12}} \times {x^2}} \right) = {x^{14}}\] because here both the terms \[{x^{12}}\] and \[{x^2}\] have the same base (i.e., x) and are multiplied with each other so their powers will be added. Also, \[\left( {{y^8} \times {y^2}} \right) = {y^{10}}\] because here both the terms \[{y^8}\] and \[{y^2}\] have the same base (i.e., y) and are multiplied with each other so their powers will be added.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

