Simplify the expression which is given by \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\].
Last updated date: 15th Mar 2023
•
Total views: 303.3k
•
Views today: 4.84k
Answer
303.3k+ views
Hint- Here, we will proceed by using the concepts that when two numbers having the same bases are multiplied and divided, their powers will be added and subtracted respectively in order to simplify the given expression.
Complete step-by-step answer:
Let us denote the given expression by a i.e., \[a = {\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\]
\[
\Rightarrow a = \dfrac{{{{\left( {2{x^3}{y^2}} \right)}^4}}}{{{{\left( {3{x^2}{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \dfrac{{{{\left( 2 \right)}^4}{{\left( {{x^3}} \right)}^4}{{\left( {{y^2}} \right)}^4}}}{{{{\left( 3 \right)}^4}{{\left( {{x^2}} \right)}^4}{{\left( {{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that for any number a, \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\]
Also, \[{\left( 2 \right)^4} = 16\] and \[{\left( 3 \right)^4} = 81\]
By using the formula \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\] and putting \[{\left( 2 \right)^4} = 16\], \[{\left( 3 \right)^4} = 81\], equation (1) becomes
\[
\Rightarrow a = \left( {\dfrac{{16{x^{3 \times 4}}{y^{2 \times 4}}}}{{81{x^{2 \times 4}}{y^{5 \times 4}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left( {\dfrac{{16{x^{12}}{y^8}}}{{81{x^8}{y^{20}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left[ {\dfrac{{\left( {16{x^{12}}{y^8}} \right)\left( {{x^2}{y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( {12} \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12}} \times {x^2}} \right)\left( {{y^8} \times {y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right]{\text{ }} \to {\text{(2)}} \\
\]
Also we know that when two numbers such that their bases are same are multiplied with each other then, their powers will be added i.e., ${a^b} \times {a^c} = {a^{b + c}}$.
Using the above concept, equation (2) becomes
\[
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12 + 2}}} \right)\left( {{y^{8 + 2}}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{14}}} \right)\left( {{y^{10}}} \right)}}{{243{x^8}{y^{20}}}}} \right] \\
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {\dfrac{{{x^{14}}}}{{{x^8}}}} \right)\left( {\dfrac{{{y^{10}}}}{{{y^{20}}}}} \right)} \right]{\text{ }} \to {\text{(3)}} \\
\]
Also we know that when two numbers such that their bases are same are divided then, their powers will be subtracted i.e., $\left( {\dfrac{{{a^b}}}{{{a^c}}}} \right) = {a^{b - c}}$.
Using the above concept, equation (3) becomes
\[
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {{x^{14 - 8}}} \right)\left( {{y^{10 - 20}}} \right)} \right] \\
\Rightarrow a = \left( {\dfrac{4}{{243}}} \right)\left( {{x^6}} \right)\left( {{y^{ - 10}}} \right) \\
\Rightarrow a = \dfrac{{4{x^6}}}{{243{y^{10}}}} \\
\]
Therefore, the given expression \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\] is simplified to \[\dfrac{{4{x^6}}}{{243{y^{10}}}}\].
Note- In this particular problem, \[\left( {{x^{12}} \times {x^2}} \right) = {x^{14}}\] because here both the terms \[{x^{12}}\] and \[{x^2}\] have the same base (i.e., x) and are multiplied with each other so their powers will be added. Also, \[\left( {{y^8} \times {y^2}} \right) = {y^{10}}\] because here both the terms \[{y^8}\] and \[{y^2}\] have the same base (i.e., y) and are multiplied with each other so their powers will be added.
Complete step-by-step answer:
Let us denote the given expression by a i.e., \[a = {\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\]
\[
\Rightarrow a = \dfrac{{{{\left( {2{x^3}{y^2}} \right)}^4}}}{{{{\left( {3{x^2}{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \dfrac{{{{\left( 2 \right)}^4}{{\left( {{x^3}} \right)}^4}{{\left( {{y^2}} \right)}^4}}}{{{{\left( 3 \right)}^4}{{\left( {{x^2}} \right)}^4}{{\left( {{y^5}} \right)}^4}}} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that for any number a, \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\]
Also, \[{\left( 2 \right)^4} = 16\] and \[{\left( 3 \right)^4} = 81\]
By using the formula \[{\left( {{a^b}} \right)^c} = {a^{b \times c}}\] and putting \[{\left( 2 \right)^4} = 16\], \[{\left( 3 \right)^4} = 81\], equation (1) becomes
\[
\Rightarrow a = \left( {\dfrac{{16{x^{3 \times 4}}{y^{2 \times 4}}}}{{81{x^{2 \times 4}}{y^{5 \times 4}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left( {\dfrac{{16{x^{12}}{y^8}}}{{81{x^8}{y^{20}}}}} \right) \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right) \\
\Rightarrow a = \left[ {\dfrac{{\left( {16{x^{12}}{y^8}} \right)\left( {{x^2}{y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( {12} \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12}} \times {x^2}} \right)\left( {{y^8} \times {y^2}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right]{\text{ }} \to {\text{(2)}} \\
\]
Also we know that when two numbers such that their bases are same are multiplied with each other then, their powers will be added i.e., ${a^b} \times {a^c} = {a^{b + c}}$.
Using the above concept, equation (2) becomes
\[
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{12 + 2}}} \right)\left( {{y^{8 + 2}}} \right)}}{{\left( {81{x^8}{y^{20}}} \right)\left( 3 \right)}}} \right] \\
\Rightarrow a = \left[ {\dfrac{{4\left( {{x^{14}}} \right)\left( {{y^{10}}} \right)}}{{243{x^8}{y^{20}}}}} \right] \\
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {\dfrac{{{x^{14}}}}{{{x^8}}}} \right)\left( {\dfrac{{{y^{10}}}}{{{y^{20}}}}} \right)} \right]{\text{ }} \to {\text{(3)}} \\
\]
Also we know that when two numbers such that their bases are same are divided then, their powers will be subtracted i.e., $\left( {\dfrac{{{a^b}}}{{{a^c}}}} \right) = {a^{b - c}}$.
Using the above concept, equation (3) becomes
\[
\Rightarrow a = \left[ {\left( {\dfrac{4}{{243}}} \right)\left( {{x^{14 - 8}}} \right)\left( {{y^{10 - 20}}} \right)} \right] \\
\Rightarrow a = \left( {\dfrac{4}{{243}}} \right)\left( {{x^6}} \right)\left( {{y^{ - 10}}} \right) \\
\Rightarrow a = \dfrac{{4{x^6}}}{{243{y^{10}}}} \\
\]
Therefore, the given expression \[{\left( {\dfrac{{2{x^3}{y^2}}}{{3{x^2}{y^5}}}} \right)^4} \times \left( {\dfrac{{{x^2}{y^2}}}{{12}}} \right)\] is simplified to \[\dfrac{{4{x^6}}}{{243{y^{10}}}}\].
Note- In this particular problem, \[\left( {{x^{12}} \times {x^2}} \right) = {x^{14}}\] because here both the terms \[{x^{12}}\] and \[{x^2}\] have the same base (i.e., x) and are multiplied with each other so their powers will be added. Also, \[\left( {{y^8} \times {y^2}} \right) = {y^{10}}\] because here both the terms \[{y^8}\] and \[{y^2}\] have the same base (i.e., y) and are multiplied with each other so their powers will be added.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
