
How do you simplify square root of $10$ times square root of $6?$
Answer
534.9k+ views
Hint: A square root of a number $'x'$ is number $'y'$ that ${{y}^{2}}=x$ in other words, a number $'y'$ whose square is $X-$ For example $4$ and $-4$ are square roots of $16$ because ${{4}^{2}}={{\left( -4 \right)}^{2}}=16$
Factorisation is defined as breaking or decomposition of an entity (for example a number, a matrix, or a polynomial) into a product of another entity or factors, which when multiplied together given the original number or matrix, etc.
Example: $24=4\times 6$
$4$ and $6$ are the factors of $24.$
Complete step by step solution:
As per the problem square root of $10$ times square root of $6.$
Here, square root of $10$ is represented by $\sqrt{10}$ and square root of $6$ is represented by $\sqrt{6}$ and times is represented by $'X'$ multiplication.
Therefore the representation of statement is,
$\Rightarrow \sqrt{10}\times \sqrt{6}$
Here, you can multiply $10$ by $6.$
$=\sqrt{60}$
To factorize the $60$. This method can be adopted.
Factors of $60$ are $2\times 2\times \,3\times 5.$
Therefore you can write in this form.
$=\sqrt{2\times 2\times 3\times 5}$
$2\times 2=4$ or ${{2}^{2}}=4$ as you can write ${{2}^{2}}$ on the place of $2\times 2$
$=\sqrt{{{2}^{2}}\times 3\times 5}$
Here, apply rule of $\sqrt{{{a}^{2}}}=a$ means you can write $\sqrt{{{2}^{2}}}=2$
Therefore the modified equation will be,
$=2\sqrt{3\times 5}$
$=2\sqrt{15}$
Hence the simplification of square root of $10$ times square root of $6$ is $2\sqrt{15}$
Additional Information:
When you have a root square root for example in the denominator of a friction you can ‘remove’ it multiplying and dividing the fraction for the same quantity. The idea is to avoid the rational number in the denominator.
Consider $\dfrac{3}{\sqrt{2}}$
You can remove the square root by multiplying and dividing by $\sqrt{2}$
$\dfrac{3}{\sqrt{2}}\dfrac{\sqrt{2}}{\sqrt{2}}$
The operation does not change the value of you fraction because $\dfrac{\sqrt{2}}{\sqrt{2}}=1$ anyway and you fraction does not change by multiplying $1$ to it.
Now you can multiply in the numerator and denominator.
$\dfrac{3}{\sqrt{2}}.\dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{3\sqrt{2}}{\left( \sqrt{2} \right).\left( \sqrt{2} \right)}=\dfrac{3\sqrt{2}}{2}$
Note: Multiplication and division radicals
$\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{a}\times \sqrt{b}=\sqrt{a\times b}$
Or $\sqrt{a}\sqrt{b}=\sqrt{a\times b}$
Remember that you can multiply the two separate square root terms. Factorization can be done by using LCM method also.
Write $2\times 2={{2}^{2}}$
Apply rule $\sqrt{{{a}^{2}}}=a$
Factorisation is defined as breaking or decomposition of an entity (for example a number, a matrix, or a polynomial) into a product of another entity or factors, which when multiplied together given the original number or matrix, etc.
Example: $24=4\times 6$
$4$ and $6$ are the factors of $24.$
Complete step by step solution:
As per the problem square root of $10$ times square root of $6.$
Here, square root of $10$ is represented by $\sqrt{10}$ and square root of $6$ is represented by $\sqrt{6}$ and times is represented by $'X'$ multiplication.
Therefore the representation of statement is,
$\Rightarrow \sqrt{10}\times \sqrt{6}$
Here, you can multiply $10$ by $6.$
$=\sqrt{60}$
To factorize the $60$. This method can be adopted.
Factors of $60$ are $2\times 2\times \,3\times 5.$
Therefore you can write in this form.
$=\sqrt{2\times 2\times 3\times 5}$
$2\times 2=4$ or ${{2}^{2}}=4$ as you can write ${{2}^{2}}$ on the place of $2\times 2$
$=\sqrt{{{2}^{2}}\times 3\times 5}$
Here, apply rule of $\sqrt{{{a}^{2}}}=a$ means you can write $\sqrt{{{2}^{2}}}=2$
Therefore the modified equation will be,
$=2\sqrt{3\times 5}$
$=2\sqrt{15}$
Hence the simplification of square root of $10$ times square root of $6$ is $2\sqrt{15}$
Additional Information:
When you have a root square root for example in the denominator of a friction you can ‘remove’ it multiplying and dividing the fraction for the same quantity. The idea is to avoid the rational number in the denominator.
Consider $\dfrac{3}{\sqrt{2}}$
You can remove the square root by multiplying and dividing by $\sqrt{2}$
$\dfrac{3}{\sqrt{2}}\dfrac{\sqrt{2}}{\sqrt{2}}$
The operation does not change the value of you fraction because $\dfrac{\sqrt{2}}{\sqrt{2}}=1$ anyway and you fraction does not change by multiplying $1$ to it.
Now you can multiply in the numerator and denominator.
$\dfrac{3}{\sqrt{2}}.\dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{3\sqrt{2}}{\left( \sqrt{2} \right).\left( \sqrt{2} \right)}=\dfrac{3\sqrt{2}}{2}$
Note: Multiplication and division radicals
$\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{a}\times \sqrt{b}=\sqrt{a\times b}$
Or $\sqrt{a}\sqrt{b}=\sqrt{a\times b}$
Remember that you can multiply the two separate square root terms. Factorization can be done by using LCM method also.
Write $2\times 2={{2}^{2}}$
Apply rule $\sqrt{{{a}^{2}}}=a$
Recently Updated Pages
Valmiki National Park?

Valency of Carbon?

Uttarakhand and Jharkhand establishment year?

I'm ready to help you create optimized meta titles and descriptions for USSR-related content. However, I don't see the specific USSR-related question you'd like me to work with in your message.
Could you please provide the actual USSR-related question you want me to optimize? Once you share it, I'll immediately provide the output in your requested format:
Meta Title

UNSC's number of permanent members?

UNO moto 2030?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

