 Questions & Answers    Question Answers

# Simplify: $\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}$  Answer Verified
Hint: For simplification, use
$\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\ \left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right) \\$
Given equation is
$\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}..................\left( 1 \right)$
Now, simplify the terms in the expression using the formulas given in the hint,
$\Rightarrow \left( {{a^2} - 16} \right) = \left( {{a^2} - {4^2}} \right) = \left( {a - 4} \right)\left( {a + 4} \right) \\ \Rightarrow \left( {{a^3} - 8} \right) = \left( {{a^3} - {2^3}} \right) = \left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right) \\$
Now, factorize the remaining terms of the expression
$\Rightarrow \left( {2{a^2} - 3a - 2} \right) = \left( {2{a^2} - 4a + a - 2} \right) = 2a\left( {a - 2} \right) + 1\left( {a - 2} \right) = \left( {2a + 1} \right)\left( {a - 2} \right) \\ \Rightarrow \left( {2{a^2} + 9a + 4} \right) = \left( {2{a^2} + 8a + a + 4} \right) = 2a\left( {a + 4} \right) + 1\left( {a + 4} \right) = \left( {2a + 1} \right)\left( {a + 4} \right) \\ \Rightarrow \left( {3{a^2} - 11a - 4} \right) = \left( {3{a^2} - 12a + a - 4} \right) = 3a\left( {a - 4} \right) + 1\left( {a - 4} \right) = \left( {3a + 1} \right)\left( {a - 4} \right) \\$
Substitute those in equation 1
$\Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} \\ \Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \div \dfrac{{\left( {3a + 1} \right)\left( {a - 4} \right)}}{{\left( {{a^2} + 4 + 2a} \right)}}...........\left( 2 \right) \\$
Now we know if we convert division into multiplication, then numerator and denominator will interchange, therefore equation 2 can be written as

$\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \times \dfrac{{\left( {{a^2} + 4 + 2a} \right)}}{{\left( {3a + 1} \right)\left( {a - 4} \right)}} \\$
Now as we see all terms are cancel out only one term is remaining which is $\dfrac{1}{{\left( {3a + 1} \right)}}$
$\Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} = \dfrac{1}{{\left( {3a + 1} \right)}}$
So, this is the required simplification.

Note: - In these types of questions the key concept is to use the formula of $\left( {{a^2} - {b^2}} \right)$ and $\left( {{a^3} - {b^3}} \right)$ to simplify the given expression to get the required result.
Bookmark added to your notes.
View Notes
Algebraic Operations on Complex Numbers  CBSE Class 8 Maths Chapter 9 - Algebraic Expressions and Identities Formulas  Algebraic Expressions  Algebraic Expressions Worksheet  Algebraic Expressions and Identities  Factorization of Algebraic Expressions  Algebraic Expressions and Equations  Variables and Constants in Algebraic Expressions  Addition and Subtraction of Algebraic Expressions  CBSE Class 7 Maths Chapter 12 - Algebraic Expressions Formulas  