
Simplify: \[\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}\]
Answer
622.2k+ views
Hint: For simplification, use
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right) \\
$
Given equation is
\[\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}..................\left( 1 \right)\]
Now, simplify the terms in the expression using the formulas given in the hint,
$
\Rightarrow \left( {{a^2} - 16} \right) = \left( {{a^2} - {4^2}} \right) = \left( {a - 4} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {{a^3} - 8} \right) = \left( {{a^3} - {2^3}} \right) = \left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right) \\
$
Now, factorize the remaining terms of the expression
$
\Rightarrow \left( {2{a^2} - 3a - 2} \right) = \left( {2{a^2} - 4a + a - 2} \right) = 2a\left( {a - 2} \right) + 1\left( {a - 2} \right) = \left( {2a + 1} \right)\left( {a - 2} \right) \\
\Rightarrow \left( {2{a^2} + 9a + 4} \right) = \left( {2{a^2} + 8a + a + 4} \right) = 2a\left( {a + 4} \right) + 1\left( {a + 4} \right) = \left( {2a + 1} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {3{a^2} - 11a - 4} \right) = \left( {3{a^2} - 12a + a - 4} \right) = 3a\left( {a - 4} \right) + 1\left( {a - 4} \right) = \left( {3a + 1} \right)\left( {a - 4} \right) \\
$
Substitute those in equation 1
$
\Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} \\
\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \div \dfrac{{\left( {3a + 1} \right)\left( {a - 4} \right)}}{{\left( {{a^2} + 4 + 2a} \right)}}...........\left( 2 \right) \\
$
Now we know if we convert division into multiplication, then numerator and denominator will interchange, therefore equation 2 can be written as
\[\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \times \dfrac{{\left( {{a^2} + 4 + 2a} \right)}}{{\left( {3a + 1} \right)\left( {a - 4} \right)}} \\
\]
Now as we see all terms are cancel out only one term is remaining which is \[\dfrac{1}{{\left( {3a + 1} \right)}}\]
\[ \Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} = \dfrac{1}{{\left( {3a + 1} \right)}}\]
So, this is the required simplification.
Note: - In these types of questions the key concept is to use the formula of $\left( {{a^2} - {b^2}} \right)$ and $\left( {{a^3} - {b^3}} \right)$ to simplify the given expression to get the required result.
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right) \\
$
Given equation is
\[\dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}}..................\left( 1 \right)\]
Now, simplify the terms in the expression using the formulas given in the hint,
$
\Rightarrow \left( {{a^2} - 16} \right) = \left( {{a^2} - {4^2}} \right) = \left( {a - 4} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {{a^3} - 8} \right) = \left( {{a^3} - {2^3}} \right) = \left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right) \\
$
Now, factorize the remaining terms of the expression
$
\Rightarrow \left( {2{a^2} - 3a - 2} \right) = \left( {2{a^2} - 4a + a - 2} \right) = 2a\left( {a - 2} \right) + 1\left( {a - 2} \right) = \left( {2a + 1} \right)\left( {a - 2} \right) \\
\Rightarrow \left( {2{a^2} + 9a + 4} \right) = \left( {2{a^2} + 8a + a + 4} \right) = 2a\left( {a + 4} \right) + 1\left( {a + 4} \right) = \left( {2a + 1} \right)\left( {a + 4} \right) \\
\Rightarrow \left( {3{a^2} - 11a - 4} \right) = \left( {3{a^2} - 12a + a - 4} \right) = 3a\left( {a - 4} \right) + 1\left( {a - 4} \right) = \left( {3a + 1} \right)\left( {a - 4} \right) \\
$
Substitute those in equation 1
$
\Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} \\
\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \div \dfrac{{\left( {3a + 1} \right)\left( {a - 4} \right)}}{{\left( {{a^2} + 4 + 2a} \right)}}...........\left( 2 \right) \\
$
Now we know if we convert division into multiplication, then numerator and denominator will interchange, therefore equation 2 can be written as
\[\Rightarrow \dfrac{{\left( {a - 4} \right)\left( {a + 4} \right)}}{{\left( {a - 2} \right)\left( {{a^2} + 4 + 2a} \right)}} \times \dfrac{{\left( {2a + 1} \right)\left( {a - 2} \right)}}{{\left( {2a + 1} \right)\left( {a + 4} \right)}} \times \dfrac{{\left( {{a^2} + 4 + 2a} \right)}}{{\left( {3a + 1} \right)\left( {a - 4} \right)}} \\
\]
Now as we see all terms are cancel out only one term is remaining which is \[\dfrac{1}{{\left( {3a + 1} \right)}}\]
\[ \Rightarrow \dfrac{{{a^2} - 16}}{{{a^3} - 8}} \times \dfrac{{2{a^2} - 3a - 2}}{{2{a^2} + 9a + 4}} \div \dfrac{{3{a^2} - 11a - 4}}{{{a^2} + 2a + 4}} = \dfrac{1}{{\left( {3a + 1} \right)}}\]
So, this is the required simplification.
Note: - In these types of questions the key concept is to use the formula of $\left( {{a^2} - {b^2}} \right)$ and $\left( {{a^3} - {b^3}} \right)$ to simplify the given expression to get the required result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

