
Show that the sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ term of an A.P. is equal to twice the ${m^{th}}$ term.
Answer
620.7k+ views
Hint: Any arithmetic progression follows the sequence of a, a + d, a + 2d, .... + a +(n-1)d . Sum of these all terms will be the sum of that arithmetic progression.
Complete step-by-step answer:
Let ‘a’ be the first term and ‘d’ be the common difference of the given A.P.
From general formula of A.P. we have ‘n’ th term A.P. is ${T_n} = a + (n - 1)d$
The m th term is ${T_m} = a + (m - 1)d$ ... (1)
Then ${(m + n)^{th}}$ term $ \Rightarrow {T_{m + n}} = a + (m + n - 1)d$ ... (2)
${(m - n)^{th}}$ term $ \Rightarrow {T_{m - n}} = a + (m - n - 1)d$ .... (3)
Let’s find the sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ terms, adding equation (2) and (3)
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (m + n - 1 + m - n - 1)d} \right]$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (2m - 2)d} \right]$
Taking out ‘2’ from RHS
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2\left[ {a + (m - 1)d} \right]$
From equation (1), we can substitute
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2{T_m}$
Hence proved.
$\therefore $The sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ term of an A.P. is equal to twice the ${m^{th}}$ term.
Note: Arithmetic progression (A.P.) is a sequence of numbers, in which the difference between consequent numbers is a fixed number (common difference) throughout the sequence. ${n^{th}}$ term of A.P. depends on first term(a) and the common difference(d) ${T_n} = a + (n - 1)d$
Complete step-by-step answer:
Let ‘a’ be the first term and ‘d’ be the common difference of the given A.P.
From general formula of A.P. we have ‘n’ th term A.P. is ${T_n} = a + (n - 1)d$
The m th term is ${T_m} = a + (m - 1)d$ ... (1)
Then ${(m + n)^{th}}$ term $ \Rightarrow {T_{m + n}} = a + (m + n - 1)d$ ... (2)
${(m - n)^{th}}$ term $ \Rightarrow {T_{m - n}} = a + (m - n - 1)d$ .... (3)
Let’s find the sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ terms, adding equation (2) and (3)
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (m + n - 1 + m - n - 1)d} \right]$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (2m - 2)d} \right]$
Taking out ‘2’ from RHS
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2\left[ {a + (m - 1)d} \right]$
From equation (1), we can substitute
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2{T_m}$
Hence proved.
$\therefore $The sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ term of an A.P. is equal to twice the ${m^{th}}$ term.
Note: Arithmetic progression (A.P.) is a sequence of numbers, in which the difference between consequent numbers is a fixed number (common difference) throughout the sequence. ${n^{th}}$ term of A.P. depends on first term(a) and the common difference(d) ${T_n} = a + (n - 1)d$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

