Answer

Verified

451.8k+ views

Hint: Any arithmetic progression follows the sequence of a, a + d, a + 2d, .... + a +(n-1)d . Sum of these all terms will be the sum of that arithmetic progression.

Complete step-by-step answer:

Let ‘a’ be the first term and ‘d’ be the common difference of the given A.P.

From general formula of A.P. we have ‘n’ th term A.P. is ${T_n} = a + (n - 1)d$

The m th term is ${T_m} = a + (m - 1)d$ ... (1)

Then ${(m + n)^{th}}$ term $ \Rightarrow {T_{m + n}} = a + (m + n - 1)d$ ... (2)

${(m - n)^{th}}$ term $ \Rightarrow {T_{m - n}} = a + (m - n - 1)d$ .... (3)

Let’s find the sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ terms, adding equation (2) and (3)

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (m + n - 1 + m - n - 1)d} \right]$

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (2m - 2)d} \right]$

Taking out ‘2’ from RHS

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2\left[ {a + (m - 1)d} \right]$

From equation (1), we can substitute

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2{T_m}$

Hence proved.

$\therefore $The sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ term of an A.P. is equal to twice the ${m^{th}}$ term.

Note: Arithmetic progression (A.P.) is a sequence of numbers, in which the difference between consequent numbers is a fixed number (common difference) throughout the sequence. ${n^{th}}$ term of A.P. depends on first term(a) and the common difference(d) ${T_n} = a + (n - 1)d$

Complete step-by-step answer:

Let ‘a’ be the first term and ‘d’ be the common difference of the given A.P.

From general formula of A.P. we have ‘n’ th term A.P. is ${T_n} = a + (n - 1)d$

The m th term is ${T_m} = a + (m - 1)d$ ... (1)

Then ${(m + n)^{th}}$ term $ \Rightarrow {T_{m + n}} = a + (m + n - 1)d$ ... (2)

${(m - n)^{th}}$ term $ \Rightarrow {T_{m - n}} = a + (m - n - 1)d$ .... (3)

Let’s find the sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ terms, adding equation (2) and (3)

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (m + n - 1 + m - n - 1)d} \right]$

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (2m - 2)d} \right]$

Taking out ‘2’ from RHS

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2\left[ {a + (m - 1)d} \right]$

From equation (1), we can substitute

$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2{T_m}$

Hence proved.

$\therefore $The sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ term of an A.P. is equal to twice the ${m^{th}}$ term.

Note: Arithmetic progression (A.P.) is a sequence of numbers, in which the difference between consequent numbers is a fixed number (common difference) throughout the sequence. ${n^{th}}$ term of A.P. depends on first term(a) and the common difference(d) ${T_n} = a + (n - 1)d$

Recently Updated Pages

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Let x1x2xn be in an AP of x1 + x4 + x9 + x11 + x20-class-11-maths-CBSE

Let x1x2x3 and x4 be four nonzero real numbers satisfying class 11 maths CBSE

Trending doubts

Change the following sentences into negative and interrogative class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

List out three methods of soil conservation