Answer

Verified

485.7k+ views

Hint: Use the basic rule of Pythagoras theorem to prove it.

Let us roughly draw a triangle with the given vertices:

Now, let us calculate distances between the points of triangle:

As we have the distance formula for two vertices in $2-D$ as

If two points $X\left( {{x}_{1}},{{y}_{1}} \right)\And Y\left( {{x}_{2}}{{y}_{2}} \right)$ are given

then

$xy=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$

By using above formula now let’s calculate $AB,BC,AC:$

$AB=\sqrt{{{\left( -2-6 \right)}^{2}}+{{\left( 3-7 \right)}^{2}}}\text{ }\left( \text{as }A=\left( -

2,3 \right)B=\left( 6,7 \right) \right)$

\[\begin{align}

& AB=\sqrt{64+16} \\

& AB=\sqrt{80}=\sqrt{4\times 4\times 5}.................\left( 1 \right) \\

& AB=4\sqrt{5} \\

\end{align}\]

Now, Let’s calculate $BC\text{ }\left( \text{as }B=\left( 6,7 \right)C=\left( 8,3 \right) \right)$

\[\begin{align}

& BC=\sqrt{{{\left( 6-8 \right)}^{2}}+{{\left( 7-3 \right)}^{2}}} \\

& BC=\sqrt{4+16} \\

& BC=\sqrt{20}=\sqrt{2\times 2\times 5}................\left( 2 \right) \\

& BC=2\sqrt{5} \\

\end{align}\]

Now,

$\begin{align}

& AC=\sqrt{{{\left( -2-8 \right)}^{2}}+{{\left( 3-3 \right)}^{2}}} \\

& AC=\sqrt{100}=10...........\left( 3 \right) \\

\end{align}$

Hence we can observe that $AC$ has the highest length in $AB,BC\And AC$ .

Therefore if $ABC$ will represent a right angle triangle then it will show or follow Pythagoras

property and $AC$ will be the Hypotenuse length.

As Pythagoras property can be expressed as following:

$x{{y}^{2}}+y{{z}^{2}}=x{{z}^{2}}$

Where $xz$ is Hypotenuse and biggest in length among the three sides.

Hence, if $ABC$ will represent right angle triangle then:

It will follow

\[\begin{align}

& A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}} \\

& {{\left( 4\sqrt{5} \right)}^{2}}+{{\left( 2\sqrt{5} \right)}^{2}}={{\left( 10

\right)}^{2}}=100 \\

\end{align}\]

Let LHS (Left Hand Side):

$\begin{align}

& {{\left( 4\sqrt{5} \right)}^{2}}+{{\left( 2\sqrt{5} \right)}^{2}}=80+20 \\

& =100=RHS \\

\end{align}$

Hence, It is proved that $ABC$ is a right angled triangle at $B$ with $AC$ as Hypotenuse.

Note: In straight line we learn concept of calculating slope of a line and property of

perpendicular lines as well which is “If two lines are perpendicular then; $Slope\left( Line1

\right)\times Slope\left(Line2 \right)=-1.........\left( 1 \right)$

As right angle triangle will have 3 lines and all have slope, and if two of them will follow

equation $\left( 1 \right)$ then the triangle will be a right angled triangle. This proving is

more advanced than the provided solution.

We have formula of slope as

$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ with a line of two points given as $\left(

{{x}_{1}},{{y}_{1}} \right)\And \left( {{x}_{2}}{{y}_{2}} \right)$ .

Now in given triangle

\[\begin{align}

& {{m}_{AB}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{3-7}{-2-6}=\dfrac{-4}{-

8}=\dfrac{1}{2} \\

& {{m}_{BC}}=\dfrac{7-3}{6-8}=\dfrac{-4}{2}=-2 \\

& \text{As }{{\text{m}}_{AB}}\times {{m}_{BC}}=-1 \\

\end{align}\]

Hence, $ABC$ have $B$ angle as $90{}^\circ $.

Therefore $ABC$is a right angle triangle.

We can calculate angle between the lines by using formula

$\tan \theta =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|$ where

${{m}_{1}}\And {{m}_{2}}$ are slopes of two lines between which we need to find angle and

slopes can be calculated by formula $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ .

Hence; this can be the angel approach as well but it may be lengthy than the above two discussed problems.

Let us roughly draw a triangle with the given vertices:

Now, let us calculate distances between the points of triangle:

As we have the distance formula for two vertices in $2-D$ as

If two points $X\left( {{x}_{1}},{{y}_{1}} \right)\And Y\left( {{x}_{2}}{{y}_{2}} \right)$ are given

then

$xy=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$

By using above formula now let’s calculate $AB,BC,AC:$

$AB=\sqrt{{{\left( -2-6 \right)}^{2}}+{{\left( 3-7 \right)}^{2}}}\text{ }\left( \text{as }A=\left( -

2,3 \right)B=\left( 6,7 \right) \right)$

\[\begin{align}

& AB=\sqrt{64+16} \\

& AB=\sqrt{80}=\sqrt{4\times 4\times 5}.................\left( 1 \right) \\

& AB=4\sqrt{5} \\

\end{align}\]

Now, Let’s calculate $BC\text{ }\left( \text{as }B=\left( 6,7 \right)C=\left( 8,3 \right) \right)$

\[\begin{align}

& BC=\sqrt{{{\left( 6-8 \right)}^{2}}+{{\left( 7-3 \right)}^{2}}} \\

& BC=\sqrt{4+16} \\

& BC=\sqrt{20}=\sqrt{2\times 2\times 5}................\left( 2 \right) \\

& BC=2\sqrt{5} \\

\end{align}\]

Now,

$\begin{align}

& AC=\sqrt{{{\left( -2-8 \right)}^{2}}+{{\left( 3-3 \right)}^{2}}} \\

& AC=\sqrt{100}=10...........\left( 3 \right) \\

\end{align}$

Hence we can observe that $AC$ has the highest length in $AB,BC\And AC$ .

Therefore if $ABC$ will represent a right angle triangle then it will show or follow Pythagoras

property and $AC$ will be the Hypotenuse length.

As Pythagoras property can be expressed as following:

$x{{y}^{2}}+y{{z}^{2}}=x{{z}^{2}}$

Where $xz$ is Hypotenuse and biggest in length among the three sides.

Hence, if $ABC$ will represent right angle triangle then:

It will follow

\[\begin{align}

& A{{B}^{2}}+B{{C}^{2}}=A{{C}^{2}} \\

& {{\left( 4\sqrt{5} \right)}^{2}}+{{\left( 2\sqrt{5} \right)}^{2}}={{\left( 10

\right)}^{2}}=100 \\

\end{align}\]

Let LHS (Left Hand Side):

$\begin{align}

& {{\left( 4\sqrt{5} \right)}^{2}}+{{\left( 2\sqrt{5} \right)}^{2}}=80+20 \\

& =100=RHS \\

\end{align}$

Hence, It is proved that $ABC$ is a right angled triangle at $B$ with $AC$ as Hypotenuse.

Note: In straight line we learn concept of calculating slope of a line and property of

perpendicular lines as well which is “If two lines are perpendicular then; $Slope\left( Line1

\right)\times Slope\left(Line2 \right)=-1.........\left( 1 \right)$

As right angle triangle will have 3 lines and all have slope, and if two of them will follow

equation $\left( 1 \right)$ then the triangle will be a right angled triangle. This proving is

more advanced than the provided solution.

We have formula of slope as

$m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ with a line of two points given as $\left(

{{x}_{1}},{{y}_{1}} \right)\And \left( {{x}_{2}}{{y}_{2}} \right)$ .

Now in given triangle

\[\begin{align}

& {{m}_{AB}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{3-7}{-2-6}=\dfrac{-4}{-

8}=\dfrac{1}{2} \\

& {{m}_{BC}}=\dfrac{7-3}{6-8}=\dfrac{-4}{2}=-2 \\

& \text{As }{{\text{m}}_{AB}}\times {{m}_{BC}}=-1 \\

\end{align}\]

Hence, $ABC$ have $B$ angle as $90{}^\circ $.

Therefore $ABC$is a right angle triangle.

We can calculate angle between the lines by using formula

$\tan \theta =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|$ where

${{m}_{1}}\And {{m}_{2}}$ are slopes of two lines between which we need to find angle and

slopes can be calculated by formula $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ .

Hence; this can be the angel approach as well but it may be lengthy than the above two discussed problems.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

A rainbow has circular shape because A The earth is class 11 physics CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell