
Show that $\sin {36^0}$ is a root of the quadratic equation $16{x^4} - 20{x^2} + 5 = 0$.
Answer
609.6k+ views
Hint – For solving such a question, use a simple formula of roots of quadratic equation.
Given equation:
$16{x^4} - 20{x^2} + 5 = 0$
Since the power of $x$ is$4\& 2$
So, let${x^2} = t$ in the above equation.
Then the equation becomes:
$16{t^2} - 20t + 5 = 0$
As we know the formula for roots of quadratic equation is:
$\left[ {x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}} \right]$ for any general quadratic equation of the form $a{x^2} + bx + c = 0$
Hence roots of the given quadratic equation are:
$
t = \dfrac{{ - \left( { - 20} \right) \pm \sqrt {{{\left( { - 20} \right)}^2} - \left( {4 \times 16 \times 5} \right)} }}{{2 \times 16}} \\
t = \dfrac{{20 \pm \sqrt {400 - 320} }}{{32}} \\
t = \dfrac{{20 \pm \sqrt {80} }}{{32}} \\
t = \dfrac{{4\left( {5 \pm \sqrt 5 } \right)}}{{32}} \\
t = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
$
Substituting the value of $x$ in place of $t$ we get:
$
{x^2} = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
x = \sqrt {\dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8}} \\
$
Multiplying and dividing numbers inside the root by $2$.
$
x = \sqrt {\dfrac{{2\left( {5 \pm \sqrt 5 } \right)}}{{16}}} \\
x = \dfrac{{\sqrt {10 \pm 2\sqrt 5 } }}{4} \\
$
As we know that
$\sin {36^0} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}$
Hence, $\sin {36^0}$ is a root of a given quadratic equation.
Note- Whenever you find such type of problems, you can convert your \[4th\] order equation into quadratic equation by assuming some variable as done in the case above, after that with the help of quadratic formula easily evaluate the unknown variable. Formulas of roots of the quadratic equation mentioned above must be remembered in order to solve the quadratic equation easily.
Given equation:
$16{x^4} - 20{x^2} + 5 = 0$
Since the power of $x$ is$4\& 2$
So, let${x^2} = t$ in the above equation.
Then the equation becomes:
$16{t^2} - 20t + 5 = 0$
As we know the formula for roots of quadratic equation is:
$\left[ {x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}} \right]$ for any general quadratic equation of the form $a{x^2} + bx + c = 0$
Hence roots of the given quadratic equation are:
$
t = \dfrac{{ - \left( { - 20} \right) \pm \sqrt {{{\left( { - 20} \right)}^2} - \left( {4 \times 16 \times 5} \right)} }}{{2 \times 16}} \\
t = \dfrac{{20 \pm \sqrt {400 - 320} }}{{32}} \\
t = \dfrac{{20 \pm \sqrt {80} }}{{32}} \\
t = \dfrac{{4\left( {5 \pm \sqrt 5 } \right)}}{{32}} \\
t = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
$
Substituting the value of $x$ in place of $t$ we get:
$
{x^2} = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
x = \sqrt {\dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8}} \\
$
Multiplying and dividing numbers inside the root by $2$.
$
x = \sqrt {\dfrac{{2\left( {5 \pm \sqrt 5 } \right)}}{{16}}} \\
x = \dfrac{{\sqrt {10 \pm 2\sqrt 5 } }}{4} \\
$
As we know that
$\sin {36^0} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}$
Hence, $\sin {36^0}$ is a root of a given quadratic equation.
Note- Whenever you find such type of problems, you can convert your \[4th\] order equation into quadratic equation by assuming some variable as done in the case above, after that with the help of quadratic formula easily evaluate the unknown variable. Formulas of roots of the quadratic equation mentioned above must be remembered in order to solve the quadratic equation easily.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

