
Show that $\sin {36^0}$ is a root of the quadratic equation $16{x^4} - 20{x^2} + 5 = 0$.
Answer
624.3k+ views
Hint – For solving such a question, use a simple formula of roots of quadratic equation.
Given equation:
$16{x^4} - 20{x^2} + 5 = 0$
Since the power of $x$ is$4\& 2$
So, let${x^2} = t$ in the above equation.
Then the equation becomes:
$16{t^2} - 20t + 5 = 0$
As we know the formula for roots of quadratic equation is:
$\left[ {x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}} \right]$ for any general quadratic equation of the form $a{x^2} + bx + c = 0$
Hence roots of the given quadratic equation are:
$
t = \dfrac{{ - \left( { - 20} \right) \pm \sqrt {{{\left( { - 20} \right)}^2} - \left( {4 \times 16 \times 5} \right)} }}{{2 \times 16}} \\
t = \dfrac{{20 \pm \sqrt {400 - 320} }}{{32}} \\
t = \dfrac{{20 \pm \sqrt {80} }}{{32}} \\
t = \dfrac{{4\left( {5 \pm \sqrt 5 } \right)}}{{32}} \\
t = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
$
Substituting the value of $x$ in place of $t$ we get:
$
{x^2} = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
x = \sqrt {\dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8}} \\
$
Multiplying and dividing numbers inside the root by $2$.
$
x = \sqrt {\dfrac{{2\left( {5 \pm \sqrt 5 } \right)}}{{16}}} \\
x = \dfrac{{\sqrt {10 \pm 2\sqrt 5 } }}{4} \\
$
As we know that
$\sin {36^0} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}$
Hence, $\sin {36^0}$ is a root of a given quadratic equation.
Note- Whenever you find such type of problems, you can convert your \[4th\] order equation into quadratic equation by assuming some variable as done in the case above, after that with the help of quadratic formula easily evaluate the unknown variable. Formulas of roots of the quadratic equation mentioned above must be remembered in order to solve the quadratic equation easily.
Given equation:
$16{x^4} - 20{x^2} + 5 = 0$
Since the power of $x$ is$4\& 2$
So, let${x^2} = t$ in the above equation.
Then the equation becomes:
$16{t^2} - 20t + 5 = 0$
As we know the formula for roots of quadratic equation is:
$\left[ {x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}} \right]$ for any general quadratic equation of the form $a{x^2} + bx + c = 0$
Hence roots of the given quadratic equation are:
$
t = \dfrac{{ - \left( { - 20} \right) \pm \sqrt {{{\left( { - 20} \right)}^2} - \left( {4 \times 16 \times 5} \right)} }}{{2 \times 16}} \\
t = \dfrac{{20 \pm \sqrt {400 - 320} }}{{32}} \\
t = \dfrac{{20 \pm \sqrt {80} }}{{32}} \\
t = \dfrac{{4\left( {5 \pm \sqrt 5 } \right)}}{{32}} \\
t = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
$
Substituting the value of $x$ in place of $t$ we get:
$
{x^2} = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
x = \sqrt {\dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8}} \\
$
Multiplying and dividing numbers inside the root by $2$.
$
x = \sqrt {\dfrac{{2\left( {5 \pm \sqrt 5 } \right)}}{{16}}} \\
x = \dfrac{{\sqrt {10 \pm 2\sqrt 5 } }}{4} \\
$
As we know that
$\sin {36^0} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}$
Hence, $\sin {36^0}$ is a root of a given quadratic equation.
Note- Whenever you find such type of problems, you can convert your \[4th\] order equation into quadratic equation by assuming some variable as done in the case above, after that with the help of quadratic formula easily evaluate the unknown variable. Formulas of roots of the quadratic equation mentioned above must be remembered in order to solve the quadratic equation easily.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

