
Show that one value of the expression
${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}$ is -1.
Answer
550.2k+ views
Hint: Use Euler’s identity ${{e}^{i\theta }}=\cos \theta +i\sin \theta $and ${{i}^{2}}=-1$. Try converting the numerator and denominator in $\cos \theta +i\sin \theta $ form. Use the trigonometric identities $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$.
Complete step-by-step answer:
Let \[L=\dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}}\]
Using $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$ we get
\[L=\dfrac{1+\cos \dfrac{3\pi }{8}+i\sin \dfrac{3\pi }{8}}{1+\cos \dfrac{3\pi }{8}-i\sin \dfrac{3\pi }{8}}\]
Using $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ we get
$L=\dfrac{2{{\cos }^{2}}\dfrac{3\pi }{16}+2i\sin \dfrac{3\pi }{16}\cos \dfrac{3\pi }{16}}{2{{\cos }^{2}}\dfrac{3\pi }{16}-2i\sin \dfrac{3\pi }{16}\cos \dfrac{3\pi }{16}}$
Taking $2\cos \dfrac{3\pi }{16}$ common from numerator and denominator, we get
$L=\dfrac{2\cos \dfrac{3\pi }{16}\left( \cos \dfrac{3\pi }{16}+i\sin \dfrac{3\pi }{16} \right)}{2\cos \dfrac{3\pi }{16}\left( \cos \dfrac{3\pi }{16}-i\sin \dfrac{3\pi }{16} \right)}$
Simplifying we get
$\begin{align}
& L=\dfrac{{{e}^{i\dfrac{3\pi }{16}}}}{{{e}^{-i\dfrac{3\pi }{16}}}} \\
& ={{e}^{i\dfrac{3\pi }{16}+i\dfrac{3\pi }{16}}} \\
& ={{e}^{i\dfrac{6\pi }{16}}} \\
& ={{e}^{\dfrac{3\pi }{8}}} \\
\end{align}$
Hence ${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}={{L}^{\dfrac{8}{3}}}={{e}^{i\dfrac{3\pi }{8}\times \dfrac{8}{3}}}={{e}^{i\pi }}=\cos \pi +i\sin \pi =-1$
Hence, we have ${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}=-1$.
Note:
[1] Euler’s identity ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
[2] Demovire’s identity ${{\left( \cos x+i\sin x \right)}^{n}}=\cos nx+i\sin nx$
[3] We can use identity $\dfrac{1+\cos x+i\sin x}{1+\cos x-i\sin x}=\cos x+i\sin x$ directly to solve the question. The derivation of the above formula will follow the same steps as done in the above solution.
[4] Complex numbers help in finding the values of $\cos nx$ and $\sin nx$ conveniently and easily.
[5] Every complex number can be written in the form of $r{{e}^{ix}}$ where r is called the modulus of the complex number and x is called the argument of the complex number.
[6] Complex numbers play a role of backbone in calculus and are used in many places.
[7] $\left| z \right|=r$ is the equation of circle centred at (0,0) and radius r in the argand plane.
[8] Complex numbers are used in Calculus e.g. Cauchy residue theorem (Theorem for complex integrals) is used to evaluate some difficult real integrals.
[9] Multiplication by $i$ is equivalent to a rotation of $90{}^\circ $ in the argand plane.
[10] A complex number can be thought of as a vector in the Argand plane. This is why complex numbers follow a similar algebra as vector algebra.
[11] Complex numbers are used in AC circuit analysis etc in physics.
Complete step-by-step answer:
Let \[L=\dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}}\]
Using $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$ we get
\[L=\dfrac{1+\cos \dfrac{3\pi }{8}+i\sin \dfrac{3\pi }{8}}{1+\cos \dfrac{3\pi }{8}-i\sin \dfrac{3\pi }{8}}\]
Using $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ we get
$L=\dfrac{2{{\cos }^{2}}\dfrac{3\pi }{16}+2i\sin \dfrac{3\pi }{16}\cos \dfrac{3\pi }{16}}{2{{\cos }^{2}}\dfrac{3\pi }{16}-2i\sin \dfrac{3\pi }{16}\cos \dfrac{3\pi }{16}}$
Taking $2\cos \dfrac{3\pi }{16}$ common from numerator and denominator, we get
$L=\dfrac{2\cos \dfrac{3\pi }{16}\left( \cos \dfrac{3\pi }{16}+i\sin \dfrac{3\pi }{16} \right)}{2\cos \dfrac{3\pi }{16}\left( \cos \dfrac{3\pi }{16}-i\sin \dfrac{3\pi }{16} \right)}$
Simplifying we get
$\begin{align}
& L=\dfrac{{{e}^{i\dfrac{3\pi }{16}}}}{{{e}^{-i\dfrac{3\pi }{16}}}} \\
& ={{e}^{i\dfrac{3\pi }{16}+i\dfrac{3\pi }{16}}} \\
& ={{e}^{i\dfrac{6\pi }{16}}} \\
& ={{e}^{\dfrac{3\pi }{8}}} \\
\end{align}$
Hence ${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}={{L}^{\dfrac{8}{3}}}={{e}^{i\dfrac{3\pi }{8}\times \dfrac{8}{3}}}={{e}^{i\pi }}=\cos \pi +i\sin \pi =-1$
Hence, we have ${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}=-1$.
Note:
[1] Euler’s identity ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
[2] Demovire’s identity ${{\left( \cos x+i\sin x \right)}^{n}}=\cos nx+i\sin nx$
[3] We can use identity $\dfrac{1+\cos x+i\sin x}{1+\cos x-i\sin x}=\cos x+i\sin x$ directly to solve the question. The derivation of the above formula will follow the same steps as done in the above solution.
[4] Complex numbers help in finding the values of $\cos nx$ and $\sin nx$ conveniently and easily.
[5] Every complex number can be written in the form of $r{{e}^{ix}}$ where r is called the modulus of the complex number and x is called the argument of the complex number.
[6] Complex numbers play a role of backbone in calculus and are used in many places.
[7] $\left| z \right|=r$ is the equation of circle centred at (0,0) and radius r in the argand plane.
[8] Complex numbers are used in Calculus e.g. Cauchy residue theorem (Theorem for complex integrals) is used to evaluate some difficult real integrals.
[9] Multiplication by $i$ is equivalent to a rotation of $90{}^\circ $ in the argand plane.
[10] A complex number can be thought of as a vector in the Argand plane. This is why complex numbers follow a similar algebra as vector algebra.
[11] Complex numbers are used in AC circuit analysis etc in physics.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The aviation fuel used in the engines of jet airplanes class 10 physics CBSE

What is the scientific name of apple class 10 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
