# Show that one value of the expression

${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}$ is -1.

Last updated date: 20th Mar 2023

•

Total views: 304.2k

•

Views today: 7.84k

Answer

Verified

304.2k+ views

Hint: Use Euler’s identity ${{e}^{i\theta }}=\cos \theta +i\sin \theta $and ${{i}^{2}}=-1$. Try converting the numerator and denominator in $\cos \theta +i\sin \theta $ form. Use the trigonometric identities $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$.

Complete step-by-step answer:

Let \[L=\dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}}\]

Using $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$ we get

\[L=\dfrac{1+\cos \dfrac{3\pi }{8}+i\sin \dfrac{3\pi }{8}}{1+\cos \dfrac{3\pi }{8}-i\sin \dfrac{3\pi }{8}}\]

Using $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ we get

$L=\dfrac{2{{\cos }^{2}}\dfrac{3\pi }{16}+2i\sin \dfrac{3\pi }{16}\cos \dfrac{3\pi }{16}}{2{{\cos }^{2}}\dfrac{3\pi }{16}-2i\sin \dfrac{3\pi }{16}\cos \dfrac{3\pi }{16}}$

Taking $2\cos \dfrac{3\pi }{16}$ common from numerator and denominator, we get

$L=\dfrac{2\cos \dfrac{3\pi }{16}\left( \cos \dfrac{3\pi }{16}+i\sin \dfrac{3\pi }{16} \right)}{2\cos \dfrac{3\pi }{16}\left( \cos \dfrac{3\pi }{16}-i\sin \dfrac{3\pi }{16} \right)}$

Simplifying we get

$\begin{align}

& L=\dfrac{{{e}^{i\dfrac{3\pi }{16}}}}{{{e}^{-i\dfrac{3\pi }{16}}}} \\

& ={{e}^{i\dfrac{3\pi }{16}+i\dfrac{3\pi }{16}}} \\

& ={{e}^{i\dfrac{6\pi }{16}}} \\

& ={{e}^{\dfrac{3\pi }{8}}} \\

\end{align}$

Hence ${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}={{L}^{\dfrac{8}{3}}}={{e}^{i\dfrac{3\pi }{8}\times \dfrac{8}{3}}}={{e}^{i\pi }}=\cos \pi +i\sin \pi =-1$

Hence, we have ${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}=-1$.

Note:

[1] Euler’s identity ${{e}^{i\theta }}=\cos \theta +i\sin \theta $

[2] Demovire’s identity ${{\left( \cos x+i\sin x \right)}^{n}}=\cos nx+i\sin nx$

[3] We can use identity $\dfrac{1+\cos x+i\sin x}{1+\cos x-i\sin x}=\cos x+i\sin x$ directly to solve the question. The derivation of the above formula will follow the same steps as done in the above solution.

[4] Complex numbers help in finding the values of $\cos nx$ and $\sin nx$ conveniently and easily.

[5] Every complex number can be written in the form of $r{{e}^{ix}}$ where r is called the modulus of the complex number and x is called the argument of the complex number.

[6] Complex numbers play a role of backbone in calculus and are used in many places.

[7] $\left| z \right|=r$ is the equation of circle centred at (0,0) and radius r in the argand plane.

[8] Complex numbers are used in Calculus e.g. Cauchy residue theorem (Theorem for complex integrals) is used to evaluate some difficult real integrals.

[9] Multiplication by $i$ is equivalent to a rotation of $90{}^\circ $ in the argand plane.

[10] A complex number can be thought of as a vector in the Argand plane. This is why complex numbers follow a similar algebra as vector algebra.

[11] Complex numbers are used in AC circuit analysis etc in physics.

Complete step-by-step answer:

Let \[L=\dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}}\]

Using $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$ we get

\[L=\dfrac{1+\cos \dfrac{3\pi }{8}+i\sin \dfrac{3\pi }{8}}{1+\cos \dfrac{3\pi }{8}-i\sin \dfrac{3\pi }{8}}\]

Using $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ we get

$L=\dfrac{2{{\cos }^{2}}\dfrac{3\pi }{16}+2i\sin \dfrac{3\pi }{16}\cos \dfrac{3\pi }{16}}{2{{\cos }^{2}}\dfrac{3\pi }{16}-2i\sin \dfrac{3\pi }{16}\cos \dfrac{3\pi }{16}}$

Taking $2\cos \dfrac{3\pi }{16}$ common from numerator and denominator, we get

$L=\dfrac{2\cos \dfrac{3\pi }{16}\left( \cos \dfrac{3\pi }{16}+i\sin \dfrac{3\pi }{16} \right)}{2\cos \dfrac{3\pi }{16}\left( \cos \dfrac{3\pi }{16}-i\sin \dfrac{3\pi }{16} \right)}$

Simplifying we get

$\begin{align}

& L=\dfrac{{{e}^{i\dfrac{3\pi }{16}}}}{{{e}^{-i\dfrac{3\pi }{16}}}} \\

& ={{e}^{i\dfrac{3\pi }{16}+i\dfrac{3\pi }{16}}} \\

& ={{e}^{i\dfrac{6\pi }{16}}} \\

& ={{e}^{\dfrac{3\pi }{8}}} \\

\end{align}$

Hence ${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}={{L}^{\dfrac{8}{3}}}={{e}^{i\dfrac{3\pi }{8}\times \dfrac{8}{3}}}={{e}^{i\pi }}=\cos \pi +i\sin \pi =-1$

Hence, we have ${{\left( \dfrac{1+\sin \dfrac{\pi }{8}+i\cos \dfrac{\pi }{8}}{1+\sin \dfrac{\pi }{8}-i\cos \dfrac{\pi }{8}} \right)}^{\dfrac{8}{3}}}=-1$.

Note:

[1] Euler’s identity ${{e}^{i\theta }}=\cos \theta +i\sin \theta $

[2] Demovire’s identity ${{\left( \cos x+i\sin x \right)}^{n}}=\cos nx+i\sin nx$

[3] We can use identity $\dfrac{1+\cos x+i\sin x}{1+\cos x-i\sin x}=\cos x+i\sin x$ directly to solve the question. The derivation of the above formula will follow the same steps as done in the above solution.

[4] Complex numbers help in finding the values of $\cos nx$ and $\sin nx$ conveniently and easily.

[5] Every complex number can be written in the form of $r{{e}^{ix}}$ where r is called the modulus of the complex number and x is called the argument of the complex number.

[6] Complex numbers play a role of backbone in calculus and are used in many places.

[7] $\left| z \right|=r$ is the equation of circle centred at (0,0) and radius r in the argand plane.

[8] Complex numbers are used in Calculus e.g. Cauchy residue theorem (Theorem for complex integrals) is used to evaluate some difficult real integrals.

[9] Multiplication by $i$ is equivalent to a rotation of $90{}^\circ $ in the argand plane.

[10] A complex number can be thought of as a vector in the Argand plane. This is why complex numbers follow a similar algebra as vector algebra.

[11] Complex numbers are used in AC circuit analysis etc in physics.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE