
Show that \[\left( {{m^2} - 1} \right),\left( {2m} \right),\left( {{m^2} + 1} \right)\] always form a Pythagorean triplet.
Answer
606.6k+ views
Hint: When the length of the side of a right triangle satisfies the Pythagoras theorem, these three numbers are known as Pythagorean triplets or triples. According to Pythagoras theorem, ${a^2} + {b^2} = {c^2}$.
Complete step-by-step answer:
Let $x = {m^2} - 1$ ,$y = 2m$ , and $z = {m^2} + 1$
To show x, y and z are Pythagorean triplet .So, we have to prove ${x^2} + {y^2} = {z^2}$ .
Now, $LHS = {x^2} + {y^2}$
Put the value of x and y in LHS
$ \Rightarrow {x^2} + {y^2} = {\left( {{m^2} - 1} \right)^2} + {\left( {2m} \right)^2}$
Use identity, ${\left( {p - q} \right)^2} = {\left( p \right)^2} - 2pq + {\left( q \right)^2}$
$
\Rightarrow {x^2} + {y^2} = {\left( {{m^2}} \right)^2} - 2\left( {{m^2}} \right)\left( 1 \right) + {\left( 1 \right)^2} + 4{m^2} \\
\Rightarrow {x^2} + {y^2} = {m^4} - 2{m^2} + 1 + 4{m^2} \\
\Rightarrow {x^2} + {y^2} = {m^4} + 2{m^2} + 1 \\
$
Use identity, ${\left( p \right)^2} + 2pq + {\left( q \right)^2} = {\left( {p + q} \right)^2}$
$
\Rightarrow {x^2} + {y^2} = {\left( {{m^2}} \right)^2} + 2\left( {{m^2}} \right)\left( 1 \right) + {\left( 1 \right)^2} \\
\Rightarrow {x^2} + {y^2} = {\left( {{m^2} + 1} \right)^2} \\
LHS = {\left( {{m^2} + 1} \right)^2}............\left( 1 \right) \\
$
Now, $RHS = {z^2}$
Put value of z in RHS
$
\Rightarrow {z^2} = {\left( {m{}^2 + 1} \right)^2} \\
RHS = {\left( {m{}^2 + 1} \right)^2}.........\left( 2 \right) \\
$
From (1) and (2) equation, LHS=RHS
Now, it's proven ${x^2} + {y^2} = {z^2}$ .
So, we can say \[\left( {{m^2} - 1} \right),\left( {2m} \right),\left( {{m^2} + 1} \right)\] always form a Pythagorean triplet.
Note: Whenever we face such types of problems we use some important points. First we assume triplets are sides of the right triangle and apply Pythagoras theorem then after using some algebraic identities if Pythagoras theorem satisfies. So, we can assume triplets are Pythagorean triplet.
Complete step-by-step answer:
Let $x = {m^2} - 1$ ,$y = 2m$ , and $z = {m^2} + 1$
To show x, y and z are Pythagorean triplet .So, we have to prove ${x^2} + {y^2} = {z^2}$ .
Now, $LHS = {x^2} + {y^2}$
Put the value of x and y in LHS
$ \Rightarrow {x^2} + {y^2} = {\left( {{m^2} - 1} \right)^2} + {\left( {2m} \right)^2}$
Use identity, ${\left( {p - q} \right)^2} = {\left( p \right)^2} - 2pq + {\left( q \right)^2}$
$
\Rightarrow {x^2} + {y^2} = {\left( {{m^2}} \right)^2} - 2\left( {{m^2}} \right)\left( 1 \right) + {\left( 1 \right)^2} + 4{m^2} \\
\Rightarrow {x^2} + {y^2} = {m^4} - 2{m^2} + 1 + 4{m^2} \\
\Rightarrow {x^2} + {y^2} = {m^4} + 2{m^2} + 1 \\
$
Use identity, ${\left( p \right)^2} + 2pq + {\left( q \right)^2} = {\left( {p + q} \right)^2}$
$
\Rightarrow {x^2} + {y^2} = {\left( {{m^2}} \right)^2} + 2\left( {{m^2}} \right)\left( 1 \right) + {\left( 1 \right)^2} \\
\Rightarrow {x^2} + {y^2} = {\left( {{m^2} + 1} \right)^2} \\
LHS = {\left( {{m^2} + 1} \right)^2}............\left( 1 \right) \\
$
Now, $RHS = {z^2}$
Put value of z in RHS
$
\Rightarrow {z^2} = {\left( {m{}^2 + 1} \right)^2} \\
RHS = {\left( {m{}^2 + 1} \right)^2}.........\left( 2 \right) \\
$
From (1) and (2) equation, LHS=RHS
Now, it's proven ${x^2} + {y^2} = {z^2}$ .
So, we can say \[\left( {{m^2} - 1} \right),\left( {2m} \right),\left( {{m^2} + 1} \right)\] always form a Pythagorean triplet.
Note: Whenever we face such types of problems we use some important points. First we assume triplets are sides of the right triangle and apply Pythagoras theorem then after using some algebraic identities if Pythagoras theorem satisfies. So, we can assume triplets are Pythagorean triplet.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

