Answer

Verified

403.5k+ views

**Hint:**We produce BO, DO, AD. We recall the definition of a central angle and have $m\widehat{BD}=m\angle BOD$. We use the relationship between the inscribed angle by an arc and central angle $m\angle BAD=\dfrac{1}{2}m\angle BOD$. We use the external angle theorem in triangle ABD and use obtained relations to prove the given statement $m\angle CBD\ne m\widehat{BD}$

**Complete step-by-step solution**We observe the given figure in the question. We have the straight-line $ABC$ which cuts the circle with center O at points A and B. The chord BD has been drawn. We produce BO. DO and AD.

We know the measure of the chord is equal to the angle it subtends at the center with its two radii which is known as the central angle. Here the chord BD makes the angle $\angle BOD$ with the radii BO and CO at the center O.So we have,

\[m\widehat{BD}=m\angle BOD...(1)\]

We also know that the inscribed angle by an arc is the angle the endpoints of the arc subtended at any point on the circle excluding the arc as the vertex. Here the arc BD has endpoints B and D. A is a point not on the arc. The arc BD subtends the inscribed angle $\angle BAD$ at A. We know from the theorem that the inscribed angle is half of the central angle. So we have,

\[m\angle BAD=\dfrac{1}{2}m\angle BOD...(2)\]

We know from the theorem of external angles that the external angle of the triangle is equal to the sum of two remote interior angles. We observe the triangle ABD where the external angle is $\angle CBD$ and its remote internal angles $\angle BAD,\angle ADB$. So we have

\[\begin{align}

& m\angle CBD=m\angle BAD+m\angle ABD \\

& \Rightarrow m\angle CBD=\dfrac{1}{2}m\angle BOD+m\angle ABD\left( \text{from}\left( 2 \right) \right) \\

& \Rightarrow m\angle CBD=\dfrac{1}{2}m\widehat{BD}+m\angle ABD\left( \text{from}\left( 1 \right) \right) \\

& \Rightarrow m\angle CBD>\dfrac{1}{2}m\widehat{BD} \\

\end{align}\]

So hence it is proved that $m\angle CBD\ne \dfrac{1}{2}m\widehat{BD}$\[\]

**Note:**We note that the inscribed angle by a semicircle is a right angle. We can use the relation between the central angle and the inscribed angle to prove that the opposite angles of a cyclic quadrilateral are supplementary.

Recently Updated Pages

Identify the type of clause underlined in the sentence class 8 english CBSE

Which statement describes the density of the inner class 8 social science CBSE

Babur considered which ruler of Gujarat as among the class 8 social science CBSE

Which island groups were affected by the Tsunami in class 8 social science CBSE

Which is the administrative system that works under class 8 social science CBSE

The year in which the state was named as Karnataka class 8 social science CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Which are the Top 10 Largest Countries of the World?

The provincial president of the constituent assembly class 11 social science CBSE

Write the 6 fundamental rights of India and explain in detail