Answer
Verified
486.6k+ views
Hint: Divide the rectangle into two parts diagonally. Then use Pythagoras theorem on the two triangles which are obtained after dividing diagonally. Then use the result to prove the lengths of the rectangle.
Complete step by step answer:
Complete step by step answer:
First let us consider a rectangle ABCD with AD as its diagonal, as shown below:
Now the diagonal divides the rectangle into two equal parts as shown in the figure above.
Now as we know the sides of the rectangle are perpendicular to each other. So the two triangles obtained after dividing the rectangle diagonally will be right angled triangles.
Now consider the right angled triangle ABD. By Pythagoras theorem we have the sum of square of two sides is equal to the square of the hypotenuse, that is,
$A{{D}^{2}}=A{{B}^{2}}+B{{D}^{2}}...........(i)$
Similarly, consider the right angled triangle ACD. By Pythagoras theorem we have the sum of square of two sides is equal to the square of the hypotenuse, that is,
$A{{D}^{2}}=A{{C}^{2}}+C{{D}^{2}}...........(ii)$
Now as we can observe in equation (i) and (ii), the left hand side is equal. So equating these two equations, we get
$ A{{B}^{2}}+B{{D}^{2}}=A{{C}^{2}}+C{{D}^{2}} $
$ \Rightarrow A{{B}^{2}}=A{{C}^{2}}+C{{D}^{2}}-B{{D}^{2}}........(iii) $
Now let us divide the rectangle ABCD using the other diagonal, i.e., BC, as shown below:
Now consider the right angled triangle ABC. By Pythagoras theorem we have the sum of square of two sides is equal to the square of the hypotenuse, that is,
$B{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}}...........(iv)$
Similarly, consider the right angled triangle BCD. By Pythagoras theorem we have,
$B{{C}^{2}}=B{{D}^{2}}+C{{D}^{2}}...........(v)$
Now as we can observe in equation (iv) and (v), the left hand side is equal. So equating these two equations, we get
$ A{{B}^{2}}+A{{C}^{2}}=B{{D}^{2}}+C{{D}^{2}} $
$ \Rightarrow A{{B}^{2}}=B{{D}^{2}}+C{{D}^{2}}-A{{C}^{2}}........(vi) $
Now equating equation (iii) and (vi), we get
$A{{C}^{2}}+C{{D}^{2}}-B{{D}^{2}}=B{{D}^{2}}+C{{D}^{2}}-A{{C}^{2}}$
Cancelling like terms, we get
$ A{{C}^{2}}-B{{D}^{2}}=B{{D}^{2}}-A{{C}^{2}} $
$ \Rightarrow A{{C}^{2}}+A{{C}^{2}}=B{{D}^{2}}+B{{D}^{2}} $
$ \Rightarrow 2A{{C}^{2}}=2B{{D}^{2}} $
$ \Rightarrow A{{C}^{2}}=B{{D}^{2}} $
Taking square root on both sides, we get
AC = BD……..(vii)
Substituting this value in equation (iii), we get
$ A{{B}^{2}}=A{{C}^{2}}+C{{D}^{2}}-A{{C}^{2}} $
$ \Rightarrow A{{B}^{2}}=C{{D}^{2}} $
Taking square root on both sides, we get
$AB = CD$
Hence the opposite sides of a rectangle are equal in length. Therefore, the given statement is TRUE.
Therefore the correct answer is option (A).
Note: Another approach is considering diagonals of rectangle are equal. So, AD = BC.
Now consider the right angled triangle ABC and ABD and apply the Pythagoras theorem. Here these two triangles are similar. So, they will give exact answer which shows the opposite sides are equal in length.
Now the diagonal divides the rectangle into two equal parts as shown in the figure above.
Now as we know the sides of the rectangle are perpendicular to each other. So the two triangles obtained after dividing the rectangle diagonally will be right angled triangles.
Now consider the right angled triangle ABD. By Pythagoras theorem we have the sum of square of two sides is equal to the square of the hypotenuse, that is,
$A{{D}^{2}}=A{{B}^{2}}+B{{D}^{2}}...........(i)$
Similarly, consider the right angled triangle ACD. By Pythagoras theorem we have the sum of square of two sides is equal to the square of the hypotenuse, that is,
$A{{D}^{2}}=A{{C}^{2}}+C{{D}^{2}}...........(ii)$
Now as we can observe in equation (i) and (ii), the left hand side is equal. So equating these two equations, we get
$ A{{B}^{2}}+B{{D}^{2}}=A{{C}^{2}}+C{{D}^{2}} $
$ \Rightarrow A{{B}^{2}}=A{{C}^{2}}+C{{D}^{2}}-B{{D}^{2}}........(iii) $
Now let us divide the rectangle ABCD using the other diagonal, i.e., BC, as shown below:
Now consider the right angled triangle ABC. By Pythagoras theorem we have the sum of square of two sides is equal to the square of the hypotenuse, that is,
$B{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}}...........(iv)$
Similarly, consider the right angled triangle BCD. By Pythagoras theorem we have,
$B{{C}^{2}}=B{{D}^{2}}+C{{D}^{2}}...........(v)$
Now as we can observe in equation (iv) and (v), the left hand side is equal. So equating these two equations, we get
$ A{{B}^{2}}+A{{C}^{2}}=B{{D}^{2}}+C{{D}^{2}} $
$ \Rightarrow A{{B}^{2}}=B{{D}^{2}}+C{{D}^{2}}-A{{C}^{2}}........(vi) $
Now equating equation (iii) and (vi), we get
$A{{C}^{2}}+C{{D}^{2}}-B{{D}^{2}}=B{{D}^{2}}+C{{D}^{2}}-A{{C}^{2}}$
Cancelling like terms, we get
$ A{{C}^{2}}-B{{D}^{2}}=B{{D}^{2}}-A{{C}^{2}} $
$ \Rightarrow A{{C}^{2}}+A{{C}^{2}}=B{{D}^{2}}+B{{D}^{2}} $
$ \Rightarrow 2A{{C}^{2}}=2B{{D}^{2}} $
$ \Rightarrow A{{C}^{2}}=B{{D}^{2}} $
Taking square root on both sides, we get
AC = BD……..(vii)
Substituting this value in equation (iii), we get
$ A{{B}^{2}}=A{{C}^{2}}+C{{D}^{2}}-A{{C}^{2}} $
$ \Rightarrow A{{B}^{2}}=C{{D}^{2}} $
Taking square root on both sides, we get
$AB = CD$
Hence the opposite sides of a rectangle are equal in length. Therefore, the given statement is TRUE.
Therefore the correct answer is option (A).
Note: Another approach is considering diagonals of rectangle are equal. So, AD = BC.
Now consider the right angled triangle ABC and ABD and apply the Pythagoras theorem. Here these two triangles are similar. So, they will give exact answer which shows the opposite sides are equal in length.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE