Answer
Verified
494.4k+ views
Hint- Here, we will be comparing the degrees of the numerator and denominator to get the given function in desired form of partial fractions.
Let the given function of $x$ be \[{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
For converting the given function F into partial fractions, we can write
\[
{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left[ {\left( {x - 1} \right) - \left( {x - 2} \right)} \right]{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4} - \left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{\left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^4}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = \dfrac{{x \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2 + 2} \right) \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right) \times {x^3}}}{{\left( {x - 1} \right)}} \\
{\text{F}} = \dfrac{{\left( {x - 2} \right){x^3} + 2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3} + {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2} \right){x^3}}}{{\left( {x - 2} \right)}} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^3} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - {x^3} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = \dfrac{{2{x^2} \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^2}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^2}\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right){x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{2{x^2}\left( {x - 2} \right) + 4{x^2}}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{\left( {x - 1} \right){x^2} + {x^2}}}{{\left( {x - 1} \right)}}} \right] = \dfrac{{2{x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^2}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = 2{x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - {x^2} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = {x^2} + \dfrac{{4x \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times x}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4x\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1 + 1} \right)}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + \dfrac{{4x\left( {x - 2} \right) + 8x}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x\left( {x - 1} \right) + x}}{{\left( {x - 1} \right)}}} \right] = {x^2} + \dfrac{{4x\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1} \right)}}{{\left( {x - 1} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 4x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - x - \dfrac{x}{{\left( {x - 1} \right)}} = {x^2} + 3x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right) + 16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + 8 + \dfrac{{16}}{{\left( {x - 2} \right)}} - 1 - \dfrac{1}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 3x + 7 + \dfrac{{16}}{{\left( {x - 2} \right)}} - \dfrac{1}{{\left( {x - 1} \right)}} \\
\]
In the above expression, the given function F is represented in the form of partial fractions.
Note- In these types of problems, we have to ensure that the final representation of the function is in terms of partial fractions by simply verifying that the degree of the numerator is greater than that of the denominator in the fractional terms involved in the final representation.
Let the given function of $x$ be \[{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
For converting the given function F into partial fractions, we can write
\[
{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left[ {\left( {x - 1} \right) - \left( {x - 2} \right)} \right]{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4} - \left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{\left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^4}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = \dfrac{{x \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2 + 2} \right) \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right) \times {x^3}}}{{\left( {x - 1} \right)}} \\
{\text{F}} = \dfrac{{\left( {x - 2} \right){x^3} + 2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3} + {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2} \right){x^3}}}{{\left( {x - 2} \right)}} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^3} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - {x^3} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = \dfrac{{2{x^2} \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^2}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^2}\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right){x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{2{x^2}\left( {x - 2} \right) + 4{x^2}}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{\left( {x - 1} \right){x^2} + {x^2}}}{{\left( {x - 1} \right)}}} \right] = \dfrac{{2{x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^2}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = 2{x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - {x^2} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = {x^2} + \dfrac{{4x \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times x}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4x\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1 + 1} \right)}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + \dfrac{{4x\left( {x - 2} \right) + 8x}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x\left( {x - 1} \right) + x}}{{\left( {x - 1} \right)}}} \right] = {x^2} + \dfrac{{4x\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1} \right)}}{{\left( {x - 1} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 4x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - x - \dfrac{x}{{\left( {x - 1} \right)}} = {x^2} + 3x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right) + 16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + 8 + \dfrac{{16}}{{\left( {x - 2} \right)}} - 1 - \dfrac{1}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 3x + 7 + \dfrac{{16}}{{\left( {x - 2} \right)}} - \dfrac{1}{{\left( {x - 1} \right)}} \\
\]
In the above expression, the given function F is represented in the form of partial fractions.
Note- In these types of problems, we have to ensure that the final representation of the function is in terms of partial fractions by simply verifying that the degree of the numerator is greater than that of the denominator in the fractional terms involved in the final representation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE