
Resolve the given expression $\dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}{\text{ }}$ into partial fractions.
Answer
606k+ views
Hint- Here, we will be comparing the degrees of the numerator and denominator to get the given function in desired form of partial fractions.
Let the given function of $x$ be \[{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
For converting the given function F into partial fractions, we can write
\[
{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left[ {\left( {x - 1} \right) - \left( {x - 2} \right)} \right]{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4} - \left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{\left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^4}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = \dfrac{{x \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2 + 2} \right) \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right) \times {x^3}}}{{\left( {x - 1} \right)}} \\
{\text{F}} = \dfrac{{\left( {x - 2} \right){x^3} + 2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3} + {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2} \right){x^3}}}{{\left( {x - 2} \right)}} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^3} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - {x^3} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = \dfrac{{2{x^2} \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^2}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^2}\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right){x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{2{x^2}\left( {x - 2} \right) + 4{x^2}}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{\left( {x - 1} \right){x^2} + {x^2}}}{{\left( {x - 1} \right)}}} \right] = \dfrac{{2{x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^2}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = 2{x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - {x^2} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = {x^2} + \dfrac{{4x \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times x}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4x\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1 + 1} \right)}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + \dfrac{{4x\left( {x - 2} \right) + 8x}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x\left( {x - 1} \right) + x}}{{\left( {x - 1} \right)}}} \right] = {x^2} + \dfrac{{4x\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1} \right)}}{{\left( {x - 1} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 4x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - x - \dfrac{x}{{\left( {x - 1} \right)}} = {x^2} + 3x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right) + 16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + 8 + \dfrac{{16}}{{\left( {x - 2} \right)}} - 1 - \dfrac{1}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 3x + 7 + \dfrac{{16}}{{\left( {x - 2} \right)}} - \dfrac{1}{{\left( {x - 1} \right)}} \\
\]
In the above expression, the given function F is represented in the form of partial fractions.
Note- In these types of problems, we have to ensure that the final representation of the function is in terms of partial fractions by simply verifying that the degree of the numerator is greater than that of the denominator in the fractional terms involved in the final representation.
Let the given function of $x$ be \[{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
For converting the given function F into partial fractions, we can write
\[
{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left[ {\left( {x - 1} \right) - \left( {x - 2} \right)} \right]{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4} - \left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{\left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^4}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = \dfrac{{x \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2 + 2} \right) \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right) \times {x^3}}}{{\left( {x - 1} \right)}} \\
{\text{F}} = \dfrac{{\left( {x - 2} \right){x^3} + 2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3} + {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2} \right){x^3}}}{{\left( {x - 2} \right)}} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^3} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - {x^3} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = \dfrac{{2{x^2} \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^2}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^2}\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right){x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{2{x^2}\left( {x - 2} \right) + 4{x^2}}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{\left( {x - 1} \right){x^2} + {x^2}}}{{\left( {x - 1} \right)}}} \right] = \dfrac{{2{x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^2}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = 2{x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - {x^2} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = {x^2} + \dfrac{{4x \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times x}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4x\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1 + 1} \right)}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + \dfrac{{4x\left( {x - 2} \right) + 8x}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x\left( {x - 1} \right) + x}}{{\left( {x - 1} \right)}}} \right] = {x^2} + \dfrac{{4x\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1} \right)}}{{\left( {x - 1} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 4x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - x - \dfrac{x}{{\left( {x - 1} \right)}} = {x^2} + 3x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right) + 16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + 8 + \dfrac{{16}}{{\left( {x - 2} \right)}} - 1 - \dfrac{1}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 3x + 7 + \dfrac{{16}}{{\left( {x - 2} \right)}} - \dfrac{1}{{\left( {x - 1} \right)}} \\
\]
In the above expression, the given function F is represented in the form of partial fractions.
Note- In these types of problems, we have to ensure that the final representation of the function is in terms of partial fractions by simply verifying that the degree of the numerator is greater than that of the denominator in the fractional terms involved in the final representation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

