Resolve the given expression $\dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}{\text{ }}$ into partial fractions.
Answer
382.8k+ views
Hint- Here, we will be comparing the degrees of the numerator and denominator to get the given function in desired form of partial fractions.
Let the given function of $x$ be \[{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
For converting the given function F into partial fractions, we can write
\[
{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left[ {\left( {x - 1} \right) - \left( {x - 2} \right)} \right]{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4} - \left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{\left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^4}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = \dfrac{{x \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2 + 2} \right) \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right) \times {x^3}}}{{\left( {x - 1} \right)}} \\
{\text{F}} = \dfrac{{\left( {x - 2} \right){x^3} + 2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3} + {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2} \right){x^3}}}{{\left( {x - 2} \right)}} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^3} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - {x^3} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = \dfrac{{2{x^2} \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^2}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^2}\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right){x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{2{x^2}\left( {x - 2} \right) + 4{x^2}}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{\left( {x - 1} \right){x^2} + {x^2}}}{{\left( {x - 1} \right)}}} \right] = \dfrac{{2{x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^2}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = 2{x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - {x^2} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = {x^2} + \dfrac{{4x \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times x}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4x\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1 + 1} \right)}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + \dfrac{{4x\left( {x - 2} \right) + 8x}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x\left( {x - 1} \right) + x}}{{\left( {x - 1} \right)}}} \right] = {x^2} + \dfrac{{4x\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1} \right)}}{{\left( {x - 1} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 4x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - x - \dfrac{x}{{\left( {x - 1} \right)}} = {x^2} + 3x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right) + 16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + 8 + \dfrac{{16}}{{\left( {x - 2} \right)}} - 1 - \dfrac{1}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 3x + 7 + \dfrac{{16}}{{\left( {x - 2} \right)}} - \dfrac{1}{{\left( {x - 1} \right)}} \\
\]
In the above expression, the given function F is represented in the form of partial fractions.
Note- In these types of problems, we have to ensure that the final representation of the function is in terms of partial fractions by simply verifying that the degree of the numerator is greater than that of the denominator in the fractional terms involved in the final representation.
Let the given function of $x$ be \[{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
For converting the given function F into partial fractions, we can write
\[
{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left[ {\left( {x - 1} \right) - \left( {x - 2} \right)} \right]{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4} - \left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{\left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^4}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = \dfrac{{x \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2 + 2} \right) \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right) \times {x^3}}}{{\left( {x - 1} \right)}} \\
{\text{F}} = \dfrac{{\left( {x - 2} \right){x^3} + 2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3} + {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2} \right){x^3}}}{{\left( {x - 2} \right)}} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^3} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - {x^3} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = \dfrac{{2{x^2} \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^2}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^2}\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right){x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{2{x^2}\left( {x - 2} \right) + 4{x^2}}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{\left( {x - 1} \right){x^2} + {x^2}}}{{\left( {x - 1} \right)}}} \right] = \dfrac{{2{x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^2}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = 2{x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - {x^2} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = {x^2} + \dfrac{{4x \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times x}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4x\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1 + 1} \right)}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + \dfrac{{4x\left( {x - 2} \right) + 8x}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x\left( {x - 1} \right) + x}}{{\left( {x - 1} \right)}}} \right] = {x^2} + \dfrac{{4x\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1} \right)}}{{\left( {x - 1} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 4x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - x - \dfrac{x}{{\left( {x - 1} \right)}} = {x^2} + 3x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right) + 16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + 8 + \dfrac{{16}}{{\left( {x - 2} \right)}} - 1 - \dfrac{1}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 3x + 7 + \dfrac{{16}}{{\left( {x - 2} \right)}} - \dfrac{1}{{\left( {x - 1} \right)}} \\
\]
In the above expression, the given function F is represented in the form of partial fractions.
Note- In these types of problems, we have to ensure that the final representation of the function is in terms of partial fractions by simply verifying that the degree of the numerator is greater than that of the denominator in the fractional terms involved in the final representation.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE
