
What is the remainder when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\]?
A.0
B.2
C.11
D.12
Answer
518.1k+ views
Hint: In this problem, we have to find the remainder, when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\]. Here we can see that the polynomial expression has the highest power, so we can use the method remainder theorem concept and find the remainder. If any polynomial \[f\left( x \right)\] is divided by \[f\left( x-h \right)\], then the remainder will be \[f\left( h \right)\], we can now use this theorem to find the remainder.
Complete step by step answer:
Here we have to find the remainder, when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\].
Here we have high power polynomial expression, so we can use the remainder theorem concept.
We know that, If any polynomial \[f\left( x \right)\] is divided by \[f\left( x-h \right)\], then the remainder will be \[f\left( h \right)\].
So, by using the remainder theorem we can say that
Since, \[\left( x+1 \right)\] is the divisor,
Then the remainder is
\[\Rightarrow \operatorname{R}=f\left( -1 \right)\]
We can now write as,
\[\begin{align}
& \Rightarrow f\left( x \right)={{x}^{11}}+1 \\
& \Rightarrow f\left( -1 \right)={{\left( -1 \right)}^{11}}+1=-1+1=0 \\
\end{align}\]
Hence, the remainder is 0 when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\].
So, the correct answer is “Option A”.
Note: We should always focus on the divisor of the polynomial which helps to give the remainder value. We should also know that the remainder theorem only works when a function is divided by a linear polynomial, which is of the form x+ number or x- number. Here we have not used the polynomial long division or synthetic division methods as the given polynomial expression has the highest power raised to it.
Complete step by step answer:
Here we have to find the remainder, when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\].
Here we have high power polynomial expression, so we can use the remainder theorem concept.
We know that, If any polynomial \[f\left( x \right)\] is divided by \[f\left( x-h \right)\], then the remainder will be \[f\left( h \right)\].
So, by using the remainder theorem we can say that
Since, \[\left( x+1 \right)\] is the divisor,
Then the remainder is
\[\Rightarrow \operatorname{R}=f\left( -1 \right)\]
We can now write as,
\[\begin{align}
& \Rightarrow f\left( x \right)={{x}^{11}}+1 \\
& \Rightarrow f\left( -1 \right)={{\left( -1 \right)}^{11}}+1=-1+1=0 \\
\end{align}\]
Hence, the remainder is 0 when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\].
So, the correct answer is “Option A”.
Note: We should always focus on the divisor of the polynomial which helps to give the remainder value. We should also know that the remainder theorem only works when a function is divided by a linear polynomial, which is of the form x+ number or x- number. Here we have not used the polynomial long division or synthetic division methods as the given polynomial expression has the highest power raised to it.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?


