What is the remainder when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\]?
A.0
B.2
C.11
D.12
Answer
281.4k+ views
Hint: In this problem, we have to find the remainder, when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\]. Here we can see that the polynomial expression has the highest power, so we can use the method remainder theorem concept and find the remainder. If any polynomial \[f\left( x \right)\] is divided by \[f\left( x-h \right)\], then the remainder will be \[f\left( h \right)\], we can now use this theorem to find the remainder.
Complete step by step answer:
Here we have to find the remainder, when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\].
Here we have high power polynomial expression, so we can use the remainder theorem concept.
We know that, If any polynomial \[f\left( x \right)\] is divided by \[f\left( x-h \right)\], then the remainder will be \[f\left( h \right)\].
So, by using the remainder theorem we can say that
Since, \[\left( x+1 \right)\] is the divisor,
Then the remainder is
\[\Rightarrow \operatorname{R}=f\left( -1 \right)\]
We can now write as,
\[\begin{align}
& \Rightarrow f\left( x \right)={{x}^{11}}+1 \\
& \Rightarrow f\left( -1 \right)={{\left( -1 \right)}^{11}}+1=-1+1=0 \\
\end{align}\]
Hence, the remainder is 0 when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\].
So, the correct answer is “Option A”.
Note: We should always focus on the divisor of the polynomial which helps to give the remainder value. We should also know that the remainder theorem only works when a function is divided by a linear polynomial, which is of the form x+ number or x- number. Here we have not used the polynomial long division or synthetic division methods as the given polynomial expression has the highest power raised to it.
Complete step by step answer:
Here we have to find the remainder, when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\].
Here we have high power polynomial expression, so we can use the remainder theorem concept.
We know that, If any polynomial \[f\left( x \right)\] is divided by \[f\left( x-h \right)\], then the remainder will be \[f\left( h \right)\].
So, by using the remainder theorem we can say that
Since, \[\left( x+1 \right)\] is the divisor,
Then the remainder is
\[\Rightarrow \operatorname{R}=f\left( -1 \right)\]
We can now write as,
\[\begin{align}
& \Rightarrow f\left( x \right)={{x}^{11}}+1 \\
& \Rightarrow f\left( -1 \right)={{\left( -1 \right)}^{11}}+1=-1+1=0 \\
\end{align}\]
Hence, the remainder is 0 when \[\left( {{x}^{11}}+1 \right)\] is divided by \[\left( x+1 \right)\].
So, the correct answer is “Option A”.
Note: We should always focus on the divisor of the polynomial which helps to give the remainder value. We should also know that the remainder theorem only works when a function is divided by a linear polynomial, which is of the form x+ number or x- number. Here we have not used the polynomial long division or synthetic division methods as the given polynomial expression has the highest power raised to it.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE
