Answer
Verified
421.2k+ views
Hint: We use the method of HCF to find the highest common factors between the numerator and the denominator. Cancel that highest common factor from numerator and denominator and obtain the lowest term of fraction.
* HCF of two or more numbers is the highest common factor which is given by the multiplication of all common prime numbers that are common in their prime factorization.
* Prime factorization is a process of writing a number in multiple of its factors where all factors are prime numbers.
* Law of exponents states that when the base is same we can add the powers of that element i.e. \[{p^m} \times {p^n} = {p^{m + n}}\]
Complete answer:
We solve for each part separately. Since we have to use the HCF method we calculate the HCF of each term using the prime factorization method and then write the fraction using that method.
a. \[\dfrac{{24}}{{48}}\]
Now we calculate HCF of the three numbers 24 and 48
We write each number in form of its prime factors
\[24 = 2 \times 2 \times 2 \times 3\]
\[48 = 2 \times 2 \times 2 \times 2 \times 3\]
Since, we know \[\underbrace {a \times a \times ..... \times a}_n = {a^n}\]. Therefore, we can write
\[24 = {2^3} \times 3\]
\[48 = {2^4} \times 3\]
HCF is the highest common divisor, so from the prime factorization above we say that \[{2^3} \times 3\]is the highest number which divides both the numbers.
\[ \Rightarrow \]HCF \[ = {2^3} \times 3\]
\[ \Rightarrow \]HCF \[ = 2 \times 2 \times 2 \times 3\]
\[ \Rightarrow \]HCF \[ = 24\]
So, we can write \[\dfrac{{24}}{{48}} = \dfrac{{24 \times 1}}{{24 \times 2}}\]
Cancel same factors i.e. the HCF from numerator and denominator
\[ \Rightarrow \dfrac{{24}}{{48}} = \dfrac{1}{2}\]
\[\therefore \]The lowest term of \[\dfrac{{24}}{{48}}\]is \[\dfrac{1}{2}\].
b. \[\dfrac{{42}}{{63}}\]
Now we calculate HCF of the three numbers 42 and 63
We write each number in form of its prime factors
\[42 = 2 \times 3 \times 7\]
\[63 = 3 \times 3 \times 7\]
Since, we know \[\underbrace {a \times a \times ..... \times a}_n = {a^n}\]. Therefore, we can write
\[42 = 2 \times 3 \times 7\]
\[63 = {3^2} \times 7\]
HCF is the highest common divisor, so from the prime factorization above we say that \[3 \times 7\]is the highest number which divides both the numbers.
\[ \Rightarrow \]HCF \[ = 3 \times 7\]
\[ \Rightarrow \]HCF \[ = 21\]
So, we can write \[\dfrac{{42}}{{63}} = \dfrac{{21 \times 2}}{{21 \times 3}}\]
Cancel same factors i.e. the HCF from numerator and denominator
\[ \Rightarrow \dfrac{{42}}{{63}} = \dfrac{2}{3}\]
\[\therefore \]The lowest term of \[\dfrac{{42}}{{63}}\]is \[\dfrac{2}{3}\].
c. \[\dfrac{{15}}{{27}}\]
Now we calculate HCF of the three numbers 15 and 27
We write each number in form of its prime factors
\[15 = 3 \times 5\]
\[27 = 3 \times 3 \times 3\]
Since, we know \[\underbrace {a \times a \times ..... \times a}_n = {a^n}\]. Therefore, we can write
\[15 = 3 \times 5\]
\[27 = {3^3}\]
HCF is the highest common divisor, so from the prime factorization above we say that \[3\]is the highest number which divides both the numbers.
\[ \Rightarrow \]HCF \[ = 3\]
So, we can write \[\dfrac{{15}}{{27}} = \dfrac{{3 \times 5}}{{3 \times 9}}\]
Cancel same factors i.e. the HCF from numerator and denominator
\[ \Rightarrow \dfrac{{15}}{{27}} = \dfrac{5}{9}\]
\[\therefore \]The lowest term of \[\dfrac{{15}}{{27}}\]is \[\dfrac{5}{9}\].
Note:
Many students get confused while calculating the HCF as they don’t know how to pick the values from prime factorizations of numbers, keep in mind we can pick common factors one-by-one as well and then multiply to get the highest common factor.
* HCF of two or more numbers is the highest common factor which is given by the multiplication of all common prime numbers that are common in their prime factorization.
* Prime factorization is a process of writing a number in multiple of its factors where all factors are prime numbers.
* Law of exponents states that when the base is same we can add the powers of that element i.e. \[{p^m} \times {p^n} = {p^{m + n}}\]
Complete answer:
We solve for each part separately. Since we have to use the HCF method we calculate the HCF of each term using the prime factorization method and then write the fraction using that method.
a. \[\dfrac{{24}}{{48}}\]
Now we calculate HCF of the three numbers 24 and 48
We write each number in form of its prime factors
\[24 = 2 \times 2 \times 2 \times 3\]
\[48 = 2 \times 2 \times 2 \times 2 \times 3\]
Since, we know \[\underbrace {a \times a \times ..... \times a}_n = {a^n}\]. Therefore, we can write
\[24 = {2^3} \times 3\]
\[48 = {2^4} \times 3\]
HCF is the highest common divisor, so from the prime factorization above we say that \[{2^3} \times 3\]is the highest number which divides both the numbers.
\[ \Rightarrow \]HCF \[ = {2^3} \times 3\]
\[ \Rightarrow \]HCF \[ = 2 \times 2 \times 2 \times 3\]
\[ \Rightarrow \]HCF \[ = 24\]
So, we can write \[\dfrac{{24}}{{48}} = \dfrac{{24 \times 1}}{{24 \times 2}}\]
Cancel same factors i.e. the HCF from numerator and denominator
\[ \Rightarrow \dfrac{{24}}{{48}} = \dfrac{1}{2}\]
\[\therefore \]The lowest term of \[\dfrac{{24}}{{48}}\]is \[\dfrac{1}{2}\].
b. \[\dfrac{{42}}{{63}}\]
Now we calculate HCF of the three numbers 42 and 63
We write each number in form of its prime factors
\[42 = 2 \times 3 \times 7\]
\[63 = 3 \times 3 \times 7\]
Since, we know \[\underbrace {a \times a \times ..... \times a}_n = {a^n}\]. Therefore, we can write
\[42 = 2 \times 3 \times 7\]
\[63 = {3^2} \times 7\]
HCF is the highest common divisor, so from the prime factorization above we say that \[3 \times 7\]is the highest number which divides both the numbers.
\[ \Rightarrow \]HCF \[ = 3 \times 7\]
\[ \Rightarrow \]HCF \[ = 21\]
So, we can write \[\dfrac{{42}}{{63}} = \dfrac{{21 \times 2}}{{21 \times 3}}\]
Cancel same factors i.e. the HCF from numerator and denominator
\[ \Rightarrow \dfrac{{42}}{{63}} = \dfrac{2}{3}\]
\[\therefore \]The lowest term of \[\dfrac{{42}}{{63}}\]is \[\dfrac{2}{3}\].
c. \[\dfrac{{15}}{{27}}\]
Now we calculate HCF of the three numbers 15 and 27
We write each number in form of its prime factors
\[15 = 3 \times 5\]
\[27 = 3 \times 3 \times 3\]
Since, we know \[\underbrace {a \times a \times ..... \times a}_n = {a^n}\]. Therefore, we can write
\[15 = 3 \times 5\]
\[27 = {3^3}\]
HCF is the highest common divisor, so from the prime factorization above we say that \[3\]is the highest number which divides both the numbers.
\[ \Rightarrow \]HCF \[ = 3\]
So, we can write \[\dfrac{{15}}{{27}} = \dfrac{{3 \times 5}}{{3 \times 9}}\]
Cancel same factors i.e. the HCF from numerator and denominator
\[ \Rightarrow \dfrac{{15}}{{27}} = \dfrac{5}{9}\]
\[\therefore \]The lowest term of \[\dfrac{{15}}{{27}}\]is \[\dfrac{5}{9}\].
Note:
Many students get confused while calculating the HCF as they don’t know how to pick the values from prime factorizations of numbers, keep in mind we can pick common factors one-by-one as well and then multiply to get the highest common factor.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell