Answer
Verified
455.1k+ views
Hint: To solve the question, the first step that we will do is to rationalize the given expression. This involves multiplying both numerator and denominator by the same irrational number. This results in easy simplification further.
Complete step-by-step solution:
The given expression is:
\[\dfrac{{\sqrt 6 + \sqrt 3 }}{{\sqrt 6 - \sqrt 3 }}\]
Here we will use identity to rationalize the denominator of the given expression.
The identity is;
$(a+b)(a-b)={a^2} - {b^2}$.
Here the denominator is \[\sqrt 6 - \sqrt 3 \] which is of the form $(a-b)$. So, we will multiply both numerator and denominator by \[\sqrt 6 + \sqrt 3 \] to get the form of the above identity in the denominator.
So, on multiplying \[\sqrt 6 + \sqrt 3 \] with numerator and denominator we get,
\[\dfrac{{(\sqrt 6 + \sqrt 3 )(\sqrt 6 + \sqrt 3 )}}{{(\sqrt 6 - \sqrt 3 )(\sqrt 6 + \sqrt 3 )}} = \dfrac{{{{(\sqrt 6 + \sqrt 3 )}^2}}}{{{{(\sqrt 6 )}^2} - {{(\sqrt 3 )}^2}}}\]
Using the identity (a+b)(a-b)=${a^2} - {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$, the above expression can be simplified as:
\[\dfrac{{6 + 3 + 2\sqrt {18} }}{{6 - 3}} = \dfrac{{9 + 2\sqrt {18} }}{3} = \dfrac{{9 + 2\sqrt {9 \times 2} }}{3} = \dfrac{{3(3 + 2\sqrt 2 )}}{3} = 3 + 2\sqrt 2 \]
Therefore, the simplified expression is \[3 + 2\sqrt 2 \].
Note: You should know about rationalization. It is the process of eliminating a radical or imaginary number from the denominator of an algebraic function by multiplying the same factor in the numerator and denominator. You should know that $\sqrt a \times \sqrt b = \sqrt {ab}$ where a, b are positive numbers.
Complete step-by-step solution:
The given expression is:
\[\dfrac{{\sqrt 6 + \sqrt 3 }}{{\sqrt 6 - \sqrt 3 }}\]
Here we will use identity to rationalize the denominator of the given expression.
The identity is;
$(a+b)(a-b)={a^2} - {b^2}$.
Here the denominator is \[\sqrt 6 - \sqrt 3 \] which is of the form $(a-b)$. So, we will multiply both numerator and denominator by \[\sqrt 6 + \sqrt 3 \] to get the form of the above identity in the denominator.
So, on multiplying \[\sqrt 6 + \sqrt 3 \] with numerator and denominator we get,
\[\dfrac{{(\sqrt 6 + \sqrt 3 )(\sqrt 6 + \sqrt 3 )}}{{(\sqrt 6 - \sqrt 3 )(\sqrt 6 + \sqrt 3 )}} = \dfrac{{{{(\sqrt 6 + \sqrt 3 )}^2}}}{{{{(\sqrt 6 )}^2} - {{(\sqrt 3 )}^2}}}\]
Using the identity (a+b)(a-b)=${a^2} - {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$, the above expression can be simplified as:
\[\dfrac{{6 + 3 + 2\sqrt {18} }}{{6 - 3}} = \dfrac{{9 + 2\sqrt {18} }}{3} = \dfrac{{9 + 2\sqrt {9 \times 2} }}{3} = \dfrac{{3(3 + 2\sqrt 2 )}}{3} = 3 + 2\sqrt 2 \]
Therefore, the simplified expression is \[3 + 2\sqrt 2 \].
Note: You should know about rationalization. It is the process of eliminating a radical or imaginary number from the denominator of an algebraic function by multiplying the same factor in the numerator and denominator. You should know that $\sqrt a \times \sqrt b = \sqrt {ab}$ where a, b are positive numbers.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE