Answer

Verified

452.4k+ views

Hint- Here, we will be using the formulas for last term of an AP and sum of first terms of an AP series.

Given, raghav buys a shop for Rs 1,20,000 and he pays half of the amount in cash in the starting itself and is left with the other half of it which he will pay through annual instalments.

Balance amount to be paid$ = \dfrac{{120000}}{2} = {\text{Rs }}60000$

Also, given the amount of each annual instalment is Rs 5,000

Total number of instalments$ = 12$ and rate of interest is 12 percent

Amount to be paid for first instalment$ = 5000 + $12 percent of the balance amount to be paid$ = 5000 + \dfrac{{12}}{{100}} \times 60000 = 5000 + 7200 = {\text{Rs }}12200$

Now, balance amount to be paid$ = 60000 - 5000 = {\text{Rs }}55000$

Amount to be paid for second instalment$ = 5000 + $12 percent of balance amount to be paid$ = 5000 + \dfrac{{12}}{{100}} \times 55000 = 5000 + 6600 = {\text{Rs }}11600$

Now, balance amount to be paid$ = 55000 - 5000 = {\text{Rs }}50000$

Amount to be paid for third instalment$ = 5000 + $12 percent of balance amount to be paid$ = 5000 + \dfrac{{12}}{{100}} \times 50000 = 5000 + 6000 = {\text{Rs }}11000$

Now, if we observe carefully we will get to know that the total amount paid for instalments annually forms arithmetic progression (AP) series because the balance amount to be paid forms an AP. Therefore, the AP series formed by the amount paid for instalments is 12200, 11600, 11000, … up to 12 instalments.

For this AP series, first term ${a_1} = 12200$, common difference $d = 11600 - 12200 = - 600$and total number of terms$ = 12$

Therefore, the total amount paid for these 12 annual instalments can be obtained by finding the sum of all the terms in the AP series which is given by ${{\text{S}}_n} = \dfrac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]$

Total amount paid for these 12 annual instalments$ = \dfrac{{12}}{2}\left[ {2 \times 12200 + \left( {12 - 1} \right)\left( { - 600} \right)} \right] = 6\left( {24400 - 6600} \right) = {\text{ Rs 106800}}$

Total cost of the shop is equal to the sum of the amount paid initially in cash (Rs 60,000) and the total amount paid for these 12 annual instalments (Rs 1,06,800).

i.e., Total cost of the shop$ = 60000 + {\text{106800}} = {\text{Rs 166,800}}$

Therefore, the actual price which raghav has to pay in order to own the shop is Rs 1,66,800.

Note- In these type of problems in which instalments are there, the total price at which the shop was bought is more than the one quoted for that particular shop because of the interest amount that has to be paid by the buyer at the quoted rate of interest according to the time requested for the completion of instalments.

Given, raghav buys a shop for Rs 1,20,000 and he pays half of the amount in cash in the starting itself and is left with the other half of it which he will pay through annual instalments.

Balance amount to be paid$ = \dfrac{{120000}}{2} = {\text{Rs }}60000$

Also, given the amount of each annual instalment is Rs 5,000

Total number of instalments$ = 12$ and rate of interest is 12 percent

Amount to be paid for first instalment$ = 5000 + $12 percent of the balance amount to be paid$ = 5000 + \dfrac{{12}}{{100}} \times 60000 = 5000 + 7200 = {\text{Rs }}12200$

Now, balance amount to be paid$ = 60000 - 5000 = {\text{Rs }}55000$

Amount to be paid for second instalment$ = 5000 + $12 percent of balance amount to be paid$ = 5000 + \dfrac{{12}}{{100}} \times 55000 = 5000 + 6600 = {\text{Rs }}11600$

Now, balance amount to be paid$ = 55000 - 5000 = {\text{Rs }}50000$

Amount to be paid for third instalment$ = 5000 + $12 percent of balance amount to be paid$ = 5000 + \dfrac{{12}}{{100}} \times 50000 = 5000 + 6000 = {\text{Rs }}11000$

Now, if we observe carefully we will get to know that the total amount paid for instalments annually forms arithmetic progression (AP) series because the balance amount to be paid forms an AP. Therefore, the AP series formed by the amount paid for instalments is 12200, 11600, 11000, … up to 12 instalments.

For this AP series, first term ${a_1} = 12200$, common difference $d = 11600 - 12200 = - 600$and total number of terms$ = 12$

Therefore, the total amount paid for these 12 annual instalments can be obtained by finding the sum of all the terms in the AP series which is given by ${{\text{S}}_n} = \dfrac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]$

Total amount paid for these 12 annual instalments$ = \dfrac{{12}}{2}\left[ {2 \times 12200 + \left( {12 - 1} \right)\left( { - 600} \right)} \right] = 6\left( {24400 - 6600} \right) = {\text{ Rs 106800}}$

Total cost of the shop is equal to the sum of the amount paid initially in cash (Rs 60,000) and the total amount paid for these 12 annual instalments (Rs 1,06,800).

i.e., Total cost of the shop$ = 60000 + {\text{106800}} = {\text{Rs 166,800}}$

Therefore, the actual price which raghav has to pay in order to own the shop is Rs 1,66,800.

Note- In these type of problems in which instalments are there, the total price at which the shop was bought is more than the one quoted for that particular shop because of the interest amount that has to be paid by the buyer at the quoted rate of interest according to the time requested for the completion of instalments.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE