Radha made a picture of an aeroplane with coloured paper as shown in the figure. Find the total area of the paper used.

Answer
383.1k+ views
Hint- Here, we will be dividing the figure of the aeroplane into simpler figures like rectangle, triangle and trapezium whose formulas for areas we already know and then using those formulas we will find the area of the whole figure.
“Complete step-by-step answer:”
From the figure, we can see that the picture of the aeroplane can be divided into five regions as shown.
As we know that area of the triangle$ = \dfrac{1}{2}\left( {{\text{Base}}} \right)\left( {{\text{Height}}} \right)$.
Also, area of the rectangle\[ = \left( {{\text{Length}}} \right)\left( {{\text{Breadth}}} \right)\]
Also, area of the trapezium$ = \dfrac{{\left( {{\text{Height of trapezium}}} \right)}}{2} \times \left( {{\text{Sum of parallel sides}}} \right)$
In $\vartriangle {\text{GFN}}$, ${\text{NF}} = \dfrac{{{\text{CF}}}}{2} = \dfrac{{{\text{KJ}}}}{2} = \dfrac{1}{2}$ cm and $GF = 5$ cm
According to Pythagoras Theorem, ${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
$
\Rightarrow {\left( {{\text{GF}}} \right)^2} = {\left( {{\text{GN}}} \right)^2} + {\left( {{\text{NF}}} \right)^2} \\
\Rightarrow {\left( {\text{5}} \right)^2} = {\left( {{\text{GN}}} \right)^2} + {\left( {\dfrac{{\text{1}}}{2}} \right)^2} \\
\Rightarrow {\left( {{\text{GN}}} \right)^2} = 25 - \dfrac{{\text{1}}}{4} = \dfrac{{99}}{4} \\
\Rightarrow {\text{GN}} = \sqrt {\dfrac{{99}}{4}} = \dfrac{{3\sqrt {11} }}{2}{\text{ cm}} \\
$
So, height of the $\vartriangle {\text{GCF}}$ is \[{\text{GN}} = \dfrac{{3\sqrt {11} }}{2}{\text{ cm}}\]
Area of region I = Area of $\vartriangle {\text{GCF}}$ $ = \dfrac{1}{2}\left( {{\text{CF}}} \right)\left( {{\text{GN}}} \right) = \dfrac{1}{2}\left( {\text{1}} \right)\left( {\dfrac{{3\sqrt {11} }}{2}} \right) = \dfrac{{3\sqrt {11} }}{4}{\text{ c}}{{\text{m}}^2}$
Area of region II = Area of rectangle KJFC\[ = \left( {{\text{KJ}}} \right)\left( {{\text{CK}}} \right) = \left( {\text{1}} \right)\left( {{\text{6}}{\text{.5}}} \right) = 6.5{\text{ c}}{{\text{m}}^2}\].
Since, the height of the trapezium KHIJ = KL = JM
In $\vartriangle {\text{JMI}}$, IJ = 1 cm and MI = HL = $\dfrac{{{\text{HI}} - {\text{KJ}}}}{2} = \dfrac{{{\text{2}} - {\text{1}}}}{2} = \dfrac{1}{2}$ cm
According to Pythagoras Theorem, ${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
$
\Rightarrow {\left( {{\text{IJ}}} \right)^2} = {\left( {{\text{JM}}} \right)^2} + {\left( {{\text{MI}}} \right)^2} \\
\Rightarrow {\left( {\text{1}} \right)^2} = {\left( {{\text{JM}}} \right)^2} + {\left( {\dfrac{{\text{1}}}{2}} \right)^2} \\
\Rightarrow {\left( {{\text{JM}}} \right)^2} = 1 - \dfrac{{\text{1}}}{4} = \dfrac{3}{4} \\
\Rightarrow {\text{JM}} = \sqrt {\dfrac{3}{4}} = \dfrac{{\sqrt 3 }}{2}{\text{ cm}} \\
$
So, the height of trapezium KHIJ is ${\text{JM}} = \dfrac{{\sqrt 3 }}{2}{\text{ cm}}$
Area of region III = Area of trapezium KHIJ$ = \dfrac{{\left( {{\text{JM}}} \right)}}{2} \times \left( {{\text{KJ}} + {\text{HI}}} \right) = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{2} \times \left( {1 + 2} \right) = \dfrac{{3\sqrt 3 }}{4}{\text{ c}}{{\text{m}}^2}$
Area of region IV = Area of region V [because both the triangles ABC and DEF have equal areas due to their same dimensions]
Area of region IV = Area of region V = Area of $\vartriangle {\text{DEF}}$$ = \dfrac{1}{2}\left( {{\text{EF}}} \right)\left( {{\text{DF}}} \right) = \dfrac{1}{2}\left( {{\text{1}}{\text{.5}}} \right)\left( {\text{6}} \right) = \dfrac{9}{2}{\text{ c}}{{\text{m}}^2}$
Therefore, the total area of the paper used = Area of region I + Area of region II + Area of region III + Area of region IV + Area of region V \[ = \dfrac{{3\sqrt {11} }}{4} + 6.5 + \dfrac{{3\sqrt 3 }}{4} + \dfrac{9}{2} + \dfrac{9}{2} = \dfrac{{3\sqrt {11} + 26 + 3\sqrt 3 + 18 + 18}}{4} = 19.2865{\text{ c}}{{\text{m}}^2}\].
So, the total area of the coloured paper used is 19.2865 \[{\text{c}}{{\text{m}}^2}\].
Note- In this particular problem, from symmetry point of view we can say that the perpendicular GN drawn from point G to the line CF divides the line into two equal parts which are CN and NF i.e., ${\text{NF}} = {\text{CN}} = \dfrac{{{\text{CF}}}}{2} = \dfrac{{{\text{KJ}}}}{2}$ and the triangles KLH and JMI are symmetrically same that’s why MI = HL = $\dfrac{{{\text{HI}} - {\text{KJ}}}}{2}$.
“Complete step-by-step answer:”
From the figure, we can see that the picture of the aeroplane can be divided into five regions as shown.
As we know that area of the triangle$ = \dfrac{1}{2}\left( {{\text{Base}}} \right)\left( {{\text{Height}}} \right)$.
Also, area of the rectangle\[ = \left( {{\text{Length}}} \right)\left( {{\text{Breadth}}} \right)\]
Also, area of the trapezium$ = \dfrac{{\left( {{\text{Height of trapezium}}} \right)}}{2} \times \left( {{\text{Sum of parallel sides}}} \right)$
In $\vartriangle {\text{GFN}}$, ${\text{NF}} = \dfrac{{{\text{CF}}}}{2} = \dfrac{{{\text{KJ}}}}{2} = \dfrac{1}{2}$ cm and $GF = 5$ cm
According to Pythagoras Theorem, ${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
$
\Rightarrow {\left( {{\text{GF}}} \right)^2} = {\left( {{\text{GN}}} \right)^2} + {\left( {{\text{NF}}} \right)^2} \\
\Rightarrow {\left( {\text{5}} \right)^2} = {\left( {{\text{GN}}} \right)^2} + {\left( {\dfrac{{\text{1}}}{2}} \right)^2} \\
\Rightarrow {\left( {{\text{GN}}} \right)^2} = 25 - \dfrac{{\text{1}}}{4} = \dfrac{{99}}{4} \\
\Rightarrow {\text{GN}} = \sqrt {\dfrac{{99}}{4}} = \dfrac{{3\sqrt {11} }}{2}{\text{ cm}} \\
$
So, height of the $\vartriangle {\text{GCF}}$ is \[{\text{GN}} = \dfrac{{3\sqrt {11} }}{2}{\text{ cm}}\]
Area of region I = Area of $\vartriangle {\text{GCF}}$ $ = \dfrac{1}{2}\left( {{\text{CF}}} \right)\left( {{\text{GN}}} \right) = \dfrac{1}{2}\left( {\text{1}} \right)\left( {\dfrac{{3\sqrt {11} }}{2}} \right) = \dfrac{{3\sqrt {11} }}{4}{\text{ c}}{{\text{m}}^2}$
Area of region II = Area of rectangle KJFC\[ = \left( {{\text{KJ}}} \right)\left( {{\text{CK}}} \right) = \left( {\text{1}} \right)\left( {{\text{6}}{\text{.5}}} \right) = 6.5{\text{ c}}{{\text{m}}^2}\].
Since, the height of the trapezium KHIJ = KL = JM
In $\vartriangle {\text{JMI}}$, IJ = 1 cm and MI = HL = $\dfrac{{{\text{HI}} - {\text{KJ}}}}{2} = \dfrac{{{\text{2}} - {\text{1}}}}{2} = \dfrac{1}{2}$ cm
According to Pythagoras Theorem, ${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
$
\Rightarrow {\left( {{\text{IJ}}} \right)^2} = {\left( {{\text{JM}}} \right)^2} + {\left( {{\text{MI}}} \right)^2} \\
\Rightarrow {\left( {\text{1}} \right)^2} = {\left( {{\text{JM}}} \right)^2} + {\left( {\dfrac{{\text{1}}}{2}} \right)^2} \\
\Rightarrow {\left( {{\text{JM}}} \right)^2} = 1 - \dfrac{{\text{1}}}{4} = \dfrac{3}{4} \\
\Rightarrow {\text{JM}} = \sqrt {\dfrac{3}{4}} = \dfrac{{\sqrt 3 }}{2}{\text{ cm}} \\
$
So, the height of trapezium KHIJ is ${\text{JM}} = \dfrac{{\sqrt 3 }}{2}{\text{ cm}}$
Area of region III = Area of trapezium KHIJ$ = \dfrac{{\left( {{\text{JM}}} \right)}}{2} \times \left( {{\text{KJ}} + {\text{HI}}} \right) = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{2} \times \left( {1 + 2} \right) = \dfrac{{3\sqrt 3 }}{4}{\text{ c}}{{\text{m}}^2}$
Area of region IV = Area of region V [because both the triangles ABC and DEF have equal areas due to their same dimensions]
Area of region IV = Area of region V = Area of $\vartriangle {\text{DEF}}$$ = \dfrac{1}{2}\left( {{\text{EF}}} \right)\left( {{\text{DF}}} \right) = \dfrac{1}{2}\left( {{\text{1}}{\text{.5}}} \right)\left( {\text{6}} \right) = \dfrac{9}{2}{\text{ c}}{{\text{m}}^2}$
Therefore, the total area of the paper used = Area of region I + Area of region II + Area of region III + Area of region IV + Area of region V \[ = \dfrac{{3\sqrt {11} }}{4} + 6.5 + \dfrac{{3\sqrt 3 }}{4} + \dfrac{9}{2} + \dfrac{9}{2} = \dfrac{{3\sqrt {11} + 26 + 3\sqrt 3 + 18 + 18}}{4} = 19.2865{\text{ c}}{{\text{m}}^2}\].
So, the total area of the coloured paper used is 19.2865 \[{\text{c}}{{\text{m}}^2}\].
Note- In this particular problem, from symmetry point of view we can say that the perpendicular GN drawn from point G to the line CF divides the line into two equal parts which are CN and NF i.e., ${\text{NF}} = {\text{CN}} = \dfrac{{{\text{CF}}}}{2} = \dfrac{{{\text{KJ}}}}{2}$ and the triangles KLH and JMI are symmetrically same that’s why MI = HL = $\dfrac{{{\text{HI}} - {\text{KJ}}}}{2}$.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which one of the following places is unlikely to be class 8 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Elucidate the structure of fructose class 12 chemistry CBSE

What is pollution? How many types of pollution? Define it
