Answer
Verified
475.2k+ views
Hint-Make use of the formula of the discriminant when the roots are non real(imaginary) and solve it.
Given that the roots of the equation are non real
The equation given is $a{x^2} + 2bx - 3c = 0$
On comparing with the standard form $a{x^2} + bx + c = 0$ ,we can write the value of a=a, b=2b,c=-3c
Now, we know that the value of the discriminant when the roots are non real is less than zero
So, we have ${b^2} - 4ac < 0$
On substituting the values of a, b, c we can write
\[\begin{gathered}
{\left( {2b} \right)^2} - 4a( - 3c) < 0 \\
\Rightarrow 4{b^2} + 12ac < 0 \\
\Rightarrow 4{b^2} < - 12ac, \\
\Rightarrow {b^2} < - 3ac, \\
\Rightarrow - a > {b^2}/(3c),a < - {b^2}/(3c) \\
\end{gathered} \]
Also we have in the equation
$4{b^2} + 12ac < 0$
$4{b^2}$ will always be positive
So, this implies to say that $12ac < 0$
$ \Rightarrow c < 0{\text{ or a < 0}}$
Also given in the question that (3c/4)<(a+b) ----(i)
We already had the value which said $a < - {b^2}/3c$
So, let’s put that value of a in eq(i)
So ,we get 3c/4<$( - {b^2}/3c + b)$---(ii) (We are putting the maximum value of a here)
So, this above equation implies that the value of c<0
So, option A is the correct answer.
Note: In equation (ii) we need not solve the entire equation, by inspection we can easily
make out that the value of c<0 also make sure to use the correct inequality of discriminant in accordance to the nature of the root given.
Given that the roots of the equation are non real
The equation given is $a{x^2} + 2bx - 3c = 0$
On comparing with the standard form $a{x^2} + bx + c = 0$ ,we can write the value of a=a, b=2b,c=-3c
Now, we know that the value of the discriminant when the roots are non real is less than zero
So, we have ${b^2} - 4ac < 0$
On substituting the values of a, b, c we can write
\[\begin{gathered}
{\left( {2b} \right)^2} - 4a( - 3c) < 0 \\
\Rightarrow 4{b^2} + 12ac < 0 \\
\Rightarrow 4{b^2} < - 12ac, \\
\Rightarrow {b^2} < - 3ac, \\
\Rightarrow - a > {b^2}/(3c),a < - {b^2}/(3c) \\
\end{gathered} \]
Also we have in the equation
$4{b^2} + 12ac < 0$
$4{b^2}$ will always be positive
So, this implies to say that $12ac < 0$
$ \Rightarrow c < 0{\text{ or a < 0}}$
Also given in the question that (3c/4)<(a+b) ----(i)
We already had the value which said $a < - {b^2}/3c$
So, let’s put that value of a in eq(i)
So ,we get 3c/4<$( - {b^2}/3c + b)$---(ii) (We are putting the maximum value of a here)
So, this above equation implies that the value of c<0
So, option A is the correct answer.
Note: In equation (ii) we need not solve the entire equation, by inspection we can easily
make out that the value of c<0 also make sure to use the correct inequality of discriminant in accordance to the nature of the root given.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE