Answer
Verified
496.2k+ views
Hint- Here, we will be using the general equation for any circle and the distance formula.
The given equations of two circles are ${x^2} + {y^2} = 4 = {2^2} \to {\text{(1)}}$ and ${x^2} + {y^2} - 8x + 12 = 0{\text{ }} \to {\text{(2)}}$
Since, the general equation of a circle with centre ${\text{C}}\left( {a,b} \right)$ and radius $r$ is given by
${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}{\text{ }} \to {\text{(3)}}$
Equation (2) can be modified in the same form as equation (3) by using completing the square method.
$
{x^2} - 8x + {4^2} - {4^2} + {y^2} + 12 = 0 \Rightarrow \left[ {{x^2} - 8x + {4^2}} \right] - 16 + {y^2} + 12 = 0 \Rightarrow {\left( {x - 4} \right)^2} + {y^2} = 4 = {2^2} \\
\Rightarrow {\left( {x - 4} \right)^2} + {y^2} = {2^2}{\text{ }} \to (4{\text{)}} \\
$
The above equation (4) represents the equation of second circle whose equation is given as equation (2).
On comparing equations (1) and (3), we get
${a_1} = 0,{\text{ }}{b_1} = 0$ and ${r_1} = 2$ where centre of the first circle whose equation is given by equation (1) is ${{\text{C}}_1}\left( {{a_1} = 0,{b_1} = 0} \right) \Leftrightarrow {{\text{C}}_1}\left( {0,0} \right)$ and radius ${r_1} = 2$.
On comparing equations (3) and (4), we get
${a_2} = 4,{\text{ }}{b_2} = 0$ and ${r_2} = 2$ where centre of the second circle whose equation is given by equation (2) is ${{\text{C}}_2}\left( {{a_2} = 4,{b_2} = 0} \right) \Leftrightarrow {{\text{C}}_2}\left( {4,0} \right)$ and radius is ${r_2} = 2$.
Now, the distance between the centres of two circles is evaluated using distance formula
${\text{d = }}{{\text{C}}_1}{{\text{C}}_2} = \sqrt {{{\left( {{a_2} - {a_1}} \right)}^2} + {{\left( {{b_2} - {b_1}} \right)}^2}} = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = 4$.
Here, ${r_1} + {r_2} = 2 + 2 = 4$
Clearly, ${{\text{C}}_1}{{\text{C}}_2} = {r_1} + {r_2}$ which means that the given two circles are touching each other externally.
Also, in total there are three common tangents which can be drawn to the given two circles which are touching each other externally.
Therefore, option C is correct.
Note- These type of problems are solved by considering the general equation of the circle and then comparing the given equations to find the given circle’s dimensions and then evaluating the centre to centre distance between the given circles.
The given equations of two circles are ${x^2} + {y^2} = 4 = {2^2} \to {\text{(1)}}$ and ${x^2} + {y^2} - 8x + 12 = 0{\text{ }} \to {\text{(2)}}$
Since, the general equation of a circle with centre ${\text{C}}\left( {a,b} \right)$ and radius $r$ is given by
${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}{\text{ }} \to {\text{(3)}}$
Equation (2) can be modified in the same form as equation (3) by using completing the square method.
$
{x^2} - 8x + {4^2} - {4^2} + {y^2} + 12 = 0 \Rightarrow \left[ {{x^2} - 8x + {4^2}} \right] - 16 + {y^2} + 12 = 0 \Rightarrow {\left( {x - 4} \right)^2} + {y^2} = 4 = {2^2} \\
\Rightarrow {\left( {x - 4} \right)^2} + {y^2} = {2^2}{\text{ }} \to (4{\text{)}} \\
$
The above equation (4) represents the equation of second circle whose equation is given as equation (2).
On comparing equations (1) and (3), we get
${a_1} = 0,{\text{ }}{b_1} = 0$ and ${r_1} = 2$ where centre of the first circle whose equation is given by equation (1) is ${{\text{C}}_1}\left( {{a_1} = 0,{b_1} = 0} \right) \Leftrightarrow {{\text{C}}_1}\left( {0,0} \right)$ and radius ${r_1} = 2$.
On comparing equations (3) and (4), we get
${a_2} = 4,{\text{ }}{b_2} = 0$ and ${r_2} = 2$ where centre of the second circle whose equation is given by equation (2) is ${{\text{C}}_2}\left( {{a_2} = 4,{b_2} = 0} \right) \Leftrightarrow {{\text{C}}_2}\left( {4,0} \right)$ and radius is ${r_2} = 2$.
Now, the distance between the centres of two circles is evaluated using distance formula
${\text{d = }}{{\text{C}}_1}{{\text{C}}_2} = \sqrt {{{\left( {{a_2} - {a_1}} \right)}^2} + {{\left( {{b_2} - {b_1}} \right)}^2}} = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = 4$.
Here, ${r_1} + {r_2} = 2 + 2 = 4$
Clearly, ${{\text{C}}_1}{{\text{C}}_2} = {r_1} + {r_2}$ which means that the given two circles are touching each other externally.
Also, in total there are three common tangents which can be drawn to the given two circles which are touching each other externally.
Therefore, option C is correct.
Note- These type of problems are solved by considering the general equation of the circle and then comparing the given equations to find the given circle’s dimensions and then evaluating the centre to centre distance between the given circles.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE