How to prove this? If \[a + b + c = 0\], then show that, \[{a^2} - bc = {b^2} - ca = {c^2} - ab\]
Answer
Verified
437.4k+ views
Hint:
Here, we will use the given condition to find one variable in terms of the other two variables. Then we will take each expression of the equation and substitute the obtained variable in each expression. We will simplify it further and prove that the given statement is true.
Formula Used:
The square of the sum of the numbers is given by an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
Complete step by step solution:
The given equation is \[a + b + c = 0\].
Now, by rewriting the equation, we get
\[ \Rightarrow c = - \left( {a + b} \right)\] ………………………………………………………………….\[\left( 1 \right)\]
Now, we will prove the given condition \[{a^2} - bc = {b^2} - ca = {c^2} - ab\] one by one and we will prove that all the three given conditions leads to the same result.
First, we will find the result of the first expression, \[{a^2} - bc\], by substituting equation \[\left( 1 \right)\]. Therefore, we get
\[{a^2} - bc = {a^2} - b\left( { - \left( {a + b} \right)} \right)\]
We know that the product of two negative integers is a positive integer, so we get
\[ \Rightarrow {a^2} - bc = {a^2} + b\left( {a + b} \right)\]
By multiplying the terms, we get
\[ \Rightarrow {a^2} - bc = {a^2} + {b^2} + ab\] ………………………………………………….\[\left( 2 \right)\]
Now, we will find the result of the second expression \[{b^2} - ca\] by substituting equation \[\left( 1 \right)\].
\[{b^2} - ca = {b^2} - \left( { - \left( {a + b} \right)} \right)a\]
We know that the product of two negative integers is a positive integer, so we get
\[ \Rightarrow {b^2} - ca = {b^2} + \left( {a + b} \right)a\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} - ca = {b^2} + {a^2} + ab\] ………………………………………………….\[\left( 3 \right)\]
Now, we will find the result of the third expression \[{c^2} - ca\] by substituting equation\[\left( 1 \right)\].
\[{c^2} - ca = {\left( { - \left( {a + b} \right)} \right)^2} - ca\]
We know that the product of two negative integers is a positive integer.
Now, by using an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we get
\[ \Rightarrow {c^2} - ab = {a^2} + {b^2} + 2ab - ab\]
Simplifying the expression, we get
\[ \Rightarrow {c^2} - ab = {a^2} + {b^2} + ab\] ………………………………………………….\[\left( 4 \right)\]
So, we get \[{a^2} - bc = {b^2} - ca = {c^2} - ab = {a^2} + {b^2} + ab\]
Therefore, \[{a^2} - bc = {b^2} - ca = {c^2} - ab\] is proved true when \[a + b + c = 0\].
Note:
We know that the given expression is an algebraic expression. An algebraic expression is defined as an expression with the combination of variables, constants and operators. We can also find the variables \[a\] and \[b\] in terms of the other variable by using the given condition. So, we get \[a = - \left( {b + c} \right)\] and \[b = - \left( {a + c} \right)\]. By substituting these variables in the given expression we will prove the same results which are equal for all the three expressions.
Here, we will use the given condition to find one variable in terms of the other two variables. Then we will take each expression of the equation and substitute the obtained variable in each expression. We will simplify it further and prove that the given statement is true.
Formula Used:
The square of the sum of the numbers is given by an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
Complete step by step solution:
The given equation is \[a + b + c = 0\].
Now, by rewriting the equation, we get
\[ \Rightarrow c = - \left( {a + b} \right)\] ………………………………………………………………….\[\left( 1 \right)\]
Now, we will prove the given condition \[{a^2} - bc = {b^2} - ca = {c^2} - ab\] one by one and we will prove that all the three given conditions leads to the same result.
First, we will find the result of the first expression, \[{a^2} - bc\], by substituting equation \[\left( 1 \right)\]. Therefore, we get
\[{a^2} - bc = {a^2} - b\left( { - \left( {a + b} \right)} \right)\]
We know that the product of two negative integers is a positive integer, so we get
\[ \Rightarrow {a^2} - bc = {a^2} + b\left( {a + b} \right)\]
By multiplying the terms, we get
\[ \Rightarrow {a^2} - bc = {a^2} + {b^2} + ab\] ………………………………………………….\[\left( 2 \right)\]
Now, we will find the result of the second expression \[{b^2} - ca\] by substituting equation \[\left( 1 \right)\].
\[{b^2} - ca = {b^2} - \left( { - \left( {a + b} \right)} \right)a\]
We know that the product of two negative integers is a positive integer, so we get
\[ \Rightarrow {b^2} - ca = {b^2} + \left( {a + b} \right)a\]
Multiplying the terms, we get
\[ \Rightarrow {b^2} - ca = {b^2} + {a^2} + ab\] ………………………………………………….\[\left( 3 \right)\]
Now, we will find the result of the third expression \[{c^2} - ca\] by substituting equation\[\left( 1 \right)\].
\[{c^2} - ca = {\left( { - \left( {a + b} \right)} \right)^2} - ca\]
We know that the product of two negative integers is a positive integer.
Now, by using an algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we get
\[ \Rightarrow {c^2} - ab = {a^2} + {b^2} + 2ab - ab\]
Simplifying the expression, we get
\[ \Rightarrow {c^2} - ab = {a^2} + {b^2} + ab\] ………………………………………………….\[\left( 4 \right)\]
So, we get \[{a^2} - bc = {b^2} - ca = {c^2} - ab = {a^2} + {b^2} + ab\]
Therefore, \[{a^2} - bc = {b^2} - ca = {c^2} - ab\] is proved true when \[a + b + c = 0\].
Note:
We know that the given expression is an algebraic expression. An algebraic expression is defined as an expression with the combination of variables, constants and operators. We can also find the variables \[a\] and \[b\] in terms of the other variable by using the given condition. So, we get \[a = - \left( {b + c} \right)\] and \[b = - \left( {a + c} \right)\]. By substituting these variables in the given expression we will prove the same results which are equal for all the three expressions.
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it