Prove the given trigonometric expression \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Answer
363.6k+ views
Hint: Expand the left hand side of the given expression and rearrange the terms. Use trigonometric identities of secant, cosecant, tangent and cotangent functions to simplify the left hand side of the given expression and thus, prove the given expression.
Complete step-by-step answer:
We have to prove that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
We will expand the left hand side of the given expression.
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\tan {{70}^{\circ }}+\tan {{70}^{\circ }}\sec {{20}^{\circ }}+\tan {{70}^{\circ }}\cot {{70}^{\circ }}\].
We know that \[\tan \theta \cot \theta =1\]. Thus, we have \[\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1\].
We can rewrite \[{{70}^{\circ }}\] as \[{{70}^{\circ }}={{90}^{\circ }}-{{20}^{\circ }}\].
Thus, we have \[\cot \left( {{70}^{\circ }} \right)=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\tan \left( {{20}^{\circ }} \right)\].
Similarly, we have \[\tan \left( {{70}^{\circ }} \right)=\tan \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\cot \left( {{20}^{\circ }} \right)\].
Substituting the above equations in the expansion of the formula, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\cot {{20}^{\circ }}\sec {{20}^{\circ }}+1\].
We know that \[\csc \theta \tan \theta =\dfrac{1}{\sin \theta }\times \dfrac{\sin \theta }{\cos \theta }=\dfrac{1}{\cos \theta }=\sec \theta \]. Thus \[\csc {{20}^{\circ }}\tan {{20}^{\circ }}=\sec {{20}^{\circ }}\].
Similarly, we have \[\csc \theta \sec \theta =\dfrac{1}{\sin \theta \cos \theta }\].
We have \[\cot \theta \sec \theta =\dfrac{1}{\cos \theta }\times \dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\sin \theta }=\csc \theta \]. Thus \[\cot {{20}^{\circ }}\sec {{20}^{\circ }}=\csc {{20}^{\circ }}\].
Substituting the above equations in the expansion of the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\sec {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\csc {{20}^{\circ }}\].
Simplifying the above expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\tan {{20}^{\circ }}+\cot {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+\dfrac{\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we get \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Hence, we have proved that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Note:
Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We have to prove that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
We will expand the left hand side of the given expression.
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\tan {{70}^{\circ }}+\tan {{70}^{\circ }}\sec {{20}^{\circ }}+\tan {{70}^{\circ }}\cot {{70}^{\circ }}\].
We know that \[\tan \theta \cot \theta =1\]. Thus, we have \[\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1\].
We can rewrite \[{{70}^{\circ }}\] as \[{{70}^{\circ }}={{90}^{\circ }}-{{20}^{\circ }}\].
Thus, we have \[\cot \left( {{70}^{\circ }} \right)=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\tan \left( {{20}^{\circ }} \right)\].
Similarly, we have \[\tan \left( {{70}^{\circ }} \right)=\tan \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\cot \left( {{20}^{\circ }} \right)\].
Substituting the above equations in the expansion of the formula, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\cot {{20}^{\circ }}\sec {{20}^{\circ }}+1\].
We know that \[\csc \theta \tan \theta =\dfrac{1}{\sin \theta }\times \dfrac{\sin \theta }{\cos \theta }=\dfrac{1}{\cos \theta }=\sec \theta \]. Thus \[\csc {{20}^{\circ }}\tan {{20}^{\circ }}=\sec {{20}^{\circ }}\].
Similarly, we have \[\csc \theta \sec \theta =\dfrac{1}{\sin \theta \cos \theta }\].
We have \[\cot \theta \sec \theta =\dfrac{1}{\cos \theta }\times \dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\sin \theta }=\csc \theta \]. Thus \[\cot {{20}^{\circ }}\sec {{20}^{\circ }}=\csc {{20}^{\circ }}\].
Substituting the above equations in the expansion of the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\sec {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\csc {{20}^{\circ }}\].
Simplifying the above expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\tan {{20}^{\circ }}+\cot {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+\dfrac{\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we get \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Hence, we have proved that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Note:
Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Last updated date: 03rd Oct 2023
•
Total views: 363.6k
•
Views today: 6.63k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
