
Prove the given trigonometric expression \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Answer
605.4k+ views
Hint: Expand the left hand side of the given expression and rearrange the terms. Use trigonometric identities of secant, cosecant, tangent and cotangent functions to simplify the left hand side of the given expression and thus, prove the given expression.
Complete step-by-step answer:
We have to prove that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
We will expand the left hand side of the given expression.
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\tan {{70}^{\circ }}+\tan {{70}^{\circ }}\sec {{20}^{\circ }}+\tan {{70}^{\circ }}\cot {{70}^{\circ }}\].
We know that \[\tan \theta \cot \theta =1\]. Thus, we have \[\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1\].
We can rewrite \[{{70}^{\circ }}\] as \[{{70}^{\circ }}={{90}^{\circ }}-{{20}^{\circ }}\].
Thus, we have \[\cot \left( {{70}^{\circ }} \right)=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\tan \left( {{20}^{\circ }} \right)\].
Similarly, we have \[\tan \left( {{70}^{\circ }} \right)=\tan \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\cot \left( {{20}^{\circ }} \right)\].
Substituting the above equations in the expansion of the formula, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\cot {{20}^{\circ }}\sec {{20}^{\circ }}+1\].
We know that \[\csc \theta \tan \theta =\dfrac{1}{\sin \theta }\times \dfrac{\sin \theta }{\cos \theta }=\dfrac{1}{\cos \theta }=\sec \theta \]. Thus \[\csc {{20}^{\circ }}\tan {{20}^{\circ }}=\sec {{20}^{\circ }}\].
Similarly, we have \[\csc \theta \sec \theta =\dfrac{1}{\sin \theta \cos \theta }\].
We have \[\cot \theta \sec \theta =\dfrac{1}{\cos \theta }\times \dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\sin \theta }=\csc \theta \]. Thus \[\cot {{20}^{\circ }}\sec {{20}^{\circ }}=\csc {{20}^{\circ }}\].
Substituting the above equations in the expansion of the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\sec {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\csc {{20}^{\circ }}\].
Simplifying the above expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\tan {{20}^{\circ }}+\cot {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+\dfrac{\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we get \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Hence, we have proved that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Note:
Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We have to prove that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
We will expand the left hand side of the given expression.
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\tan {{70}^{\circ }}+\tan {{70}^{\circ }}\sec {{20}^{\circ }}+\tan {{70}^{\circ }}\cot {{70}^{\circ }}\].
We know that \[\tan \theta \cot \theta =1\]. Thus, we have \[\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1\].
We can rewrite \[{{70}^{\circ }}\] as \[{{70}^{\circ }}={{90}^{\circ }}-{{20}^{\circ }}\].
Thus, we have \[\cot \left( {{70}^{\circ }} \right)=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\tan \left( {{20}^{\circ }} \right)\].
Similarly, we have \[\tan \left( {{70}^{\circ }} \right)=\tan \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\cot \left( {{20}^{\circ }} \right)\].
Substituting the above equations in the expansion of the formula, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\cot {{20}^{\circ }}\sec {{20}^{\circ }}+1\].
We know that \[\csc \theta \tan \theta =\dfrac{1}{\sin \theta }\times \dfrac{\sin \theta }{\cos \theta }=\dfrac{1}{\cos \theta }=\sec \theta \]. Thus \[\csc {{20}^{\circ }}\tan {{20}^{\circ }}=\sec {{20}^{\circ }}\].
Similarly, we have \[\csc \theta \sec \theta =\dfrac{1}{\sin \theta \cos \theta }\].
We have \[\cot \theta \sec \theta =\dfrac{1}{\cos \theta }\times \dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\sin \theta }=\csc \theta \]. Thus \[\cot {{20}^{\circ }}\sec {{20}^{\circ }}=\csc {{20}^{\circ }}\].
Substituting the above equations in the expansion of the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\sec {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\csc {{20}^{\circ }}\].
Simplifying the above expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\tan {{20}^{\circ }}+\cot {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+\dfrac{\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we get \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Hence, we have proved that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Note:
Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

