Prove the given trigonometric expression \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Last updated date: 24th Mar 2023
•
Total views: 307.5k
•
Views today: 6.84k
Answer
307.5k+ views
Hint: Expand the left hand side of the given expression and rearrange the terms. Use trigonometric identities of secant, cosecant, tangent and cotangent functions to simplify the left hand side of the given expression and thus, prove the given expression.
Complete step-by-step answer:
We have to prove that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
We will expand the left hand side of the given expression.
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\tan {{70}^{\circ }}+\tan {{70}^{\circ }}\sec {{20}^{\circ }}+\tan {{70}^{\circ }}\cot {{70}^{\circ }}\].
We know that \[\tan \theta \cot \theta =1\]. Thus, we have \[\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1\].
We can rewrite \[{{70}^{\circ }}\] as \[{{70}^{\circ }}={{90}^{\circ }}-{{20}^{\circ }}\].
Thus, we have \[\cot \left( {{70}^{\circ }} \right)=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\tan \left( {{20}^{\circ }} \right)\].
Similarly, we have \[\tan \left( {{70}^{\circ }} \right)=\tan \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\cot \left( {{20}^{\circ }} \right)\].
Substituting the above equations in the expansion of the formula, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\cot {{20}^{\circ }}\sec {{20}^{\circ }}+1\].
We know that \[\csc \theta \tan \theta =\dfrac{1}{\sin \theta }\times \dfrac{\sin \theta }{\cos \theta }=\dfrac{1}{\cos \theta }=\sec \theta \]. Thus \[\csc {{20}^{\circ }}\tan {{20}^{\circ }}=\sec {{20}^{\circ }}\].
Similarly, we have \[\csc \theta \sec \theta =\dfrac{1}{\sin \theta \cos \theta }\].
We have \[\cot \theta \sec \theta =\dfrac{1}{\cos \theta }\times \dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\sin \theta }=\csc \theta \]. Thus \[\cot {{20}^{\circ }}\sec {{20}^{\circ }}=\csc {{20}^{\circ }}\].
Substituting the above equations in the expansion of the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\sec {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\csc {{20}^{\circ }}\].
Simplifying the above expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\tan {{20}^{\circ }}+\cot {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+\dfrac{\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we get \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Hence, we have proved that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Note:
Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We have to prove that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
We will expand the left hand side of the given expression.
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\cot {{70}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\tan {{70}^{\circ }}+\tan {{70}^{\circ }}\sec {{20}^{\circ }}+\tan {{70}^{\circ }}\cot {{70}^{\circ }}\].
We know that \[\tan \theta \cot \theta =1\]. Thus, we have \[\tan {{70}^{\circ }}\cot {{70}^{\circ }}=1\].
We can rewrite \[{{70}^{\circ }}\] as \[{{70}^{\circ }}={{90}^{\circ }}-{{20}^{\circ }}\].
Thus, we have \[\cot \left( {{70}^{\circ }} \right)=\cot \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\tan \left( {{20}^{\circ }} \right)\].
Similarly, we have \[\tan \left( {{70}^{\circ }} \right)=\tan \left( {{90}^{\circ }}-{{20}^{\circ }} \right)=\cot \left( {{20}^{\circ }} \right)\].
Substituting the above equations in the expansion of the formula, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=1+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\tan {{20}^{\circ }}-\csc {{20}^{\circ }}\sec {{20}^{\circ }}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\cot {{20}^{\circ }}\sec {{20}^{\circ }}+1\].
We know that \[\csc \theta \tan \theta =\dfrac{1}{\sin \theta }\times \dfrac{\sin \theta }{\cos \theta }=\dfrac{1}{\cos \theta }=\sec \theta \]. Thus \[\csc {{20}^{\circ }}\tan {{20}^{\circ }}=\sec {{20}^{\circ }}\].
Similarly, we have \[\csc \theta \sec \theta =\dfrac{1}{\sin \theta \cos \theta }\].
We have \[\cot \theta \sec \theta =\dfrac{1}{\cos \theta }\times \dfrac{\cos \theta }{\sin \theta }=\dfrac{1}{\sin \theta }=\csc \theta \]. Thus \[\cot {{20}^{\circ }}\sec {{20}^{\circ }}=\csc {{20}^{\circ }}\].
Substituting the above equations in the expansion of the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\sec {{20}^{\circ }}+\tan {{20}^{\circ }}-\sec {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\csc {{20}^{\circ }}+\cot {{20}^{\circ }}+\csc {{20}^{\circ }}\].
Simplifying the above expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\tan {{20}^{\circ }}+\cot {{20}^{\circ }}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+\dfrac{\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{{{\sin }^{2}}{{20}^{\circ }}+{{\cos }^{2}}{{20}^{\circ }}}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Thus, we have \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2+\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}-\dfrac{1}{\sin {{20}^{\circ }}\cos {{20}^{\circ }}}\].
Further simplifying the expression, we get \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Hence, we have proved that \[\left( 1+\sec {{20}^{\circ }}+\cot {{70}^{\circ }} \right)\left( 1-\csc {{20}^{\circ }}+\tan {{70}^{\circ }} \right)=2\].
Note:
Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
