Answer
Verified
420.9k+ views
Hint:
We start solving the problem by considering the L.H.S (Left Hand side) of the given equation. We then make use of the result $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ to proceed through the problem. We then make use of the result $ \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ to proceed through further through the problem. We then make the necessary calculations and make use of the results $ \sin \left( -x \right)=-\sin x $ , $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ to complete the proof of given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}.\cos {{80}^{\circ }} $ .
Let us consider L.H.S (Left Hand side) of the given result i.e., $ \sin {{40}^{\circ }}-\cos {{70}^{\circ }} $ .
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin \left( {{90}^{\circ }}-{{50}^{\circ }} \right)-\cos {{70}^{\circ }}\] ---(1).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (1).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\cos {{50}^{\circ }}-\cos {{70}^{\circ }}\] ---(2).
We know that $ \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ . Let us use this result in equation (2).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( \dfrac{{{50}^{\circ }}+{{70}^{\circ }}}{2} \right)\sin \left( \dfrac{{{50}^{\circ }}-{{70}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( \dfrac{{{120}^{\circ }}}{2} \right)\sin \left( \dfrac{-{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( {{60}^{\circ }} \right)\sin \left( -{{10}^{\circ }} \right)\] ---(3).
We know that $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} $ and $ \sin \left( -x \right)=-\sin x $ . Let us use these results in equation (3).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\left( \dfrac{\sqrt{3}}{2} \right)\left( -\sin {{10}^{\circ }} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin {{10}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin \left( {{90}^{\circ }}-{{80}^{\circ }} \right)\] ---(4).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (4).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\] ---(5).
From equation (5), we can see that the L.H.S (Left Hand Side) is equal to the given R.H.S (Right-hand side).
$ \therefore $ We have proved the given result \[\sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\].
Note:
We can also solve the given problem as shown below:
We have \[\sin {{40}^{\circ }}-\cos {{70}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin {{40}^{\circ }}-\cos \left( {{90}^{\circ }}-{{20}^{\circ }} \right)\] ---(6).
We know that $ \cos \left( {{90}^{\circ }}-\alpha \right)=\sin \alpha $ . Let us use this result in equation (6).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin {{40}^{\circ }}-\sin {{20}^{\circ }}\] ---(7).
We know that $ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ . Let us use this result in equation (7).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( \dfrac{{{40}^{\circ }}+{{20}^{\circ }}}{2} \right)\sin \left( \dfrac{{{40}^{\circ }}-{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( \dfrac{{{60}^{\circ }}}{2} \right)\sin \left( \dfrac{{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( {{30}^{\circ }} \right)\sin \left( {{10}^{\circ }} \right)\] ---(8).
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this result in equation (8).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\left( \dfrac{\sqrt{3}}{2} \right)\left( \sin {{10}^{\circ }} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin {{10}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin \left( {{90}^{\circ }}-{{80}^{\circ }} \right)\] ---(9).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (9).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\].
We start solving the problem by considering the L.H.S (Left Hand side) of the given equation. We then make use of the result $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ to proceed through the problem. We then make use of the result $ \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ to proceed through further through the problem. We then make the necessary calculations and make use of the results $ \sin \left( -x \right)=-\sin x $ , $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ to complete the proof of given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}.\cos {{80}^{\circ }} $ .
Let us consider L.H.S (Left Hand side) of the given result i.e., $ \sin {{40}^{\circ }}-\cos {{70}^{\circ }} $ .
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin \left( {{90}^{\circ }}-{{50}^{\circ }} \right)-\cos {{70}^{\circ }}\] ---(1).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (1).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\cos {{50}^{\circ }}-\cos {{70}^{\circ }}\] ---(2).
We know that $ \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ . Let us use this result in equation (2).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( \dfrac{{{50}^{\circ }}+{{70}^{\circ }}}{2} \right)\sin \left( \dfrac{{{50}^{\circ }}-{{70}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( \dfrac{{{120}^{\circ }}}{2} \right)\sin \left( \dfrac{-{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( {{60}^{\circ }} \right)\sin \left( -{{10}^{\circ }} \right)\] ---(3).
We know that $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} $ and $ \sin \left( -x \right)=-\sin x $ . Let us use these results in equation (3).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\left( \dfrac{\sqrt{3}}{2} \right)\left( -\sin {{10}^{\circ }} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin {{10}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin \left( {{90}^{\circ }}-{{80}^{\circ }} \right)\] ---(4).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (4).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\] ---(5).
From equation (5), we can see that the L.H.S (Left Hand Side) is equal to the given R.H.S (Right-hand side).
$ \therefore $ We have proved the given result \[\sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\].
Note:
We can also solve the given problem as shown below:
We have \[\sin {{40}^{\circ }}-\cos {{70}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin {{40}^{\circ }}-\cos \left( {{90}^{\circ }}-{{20}^{\circ }} \right)\] ---(6).
We know that $ \cos \left( {{90}^{\circ }}-\alpha \right)=\sin \alpha $ . Let us use this result in equation (6).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin {{40}^{\circ }}-\sin {{20}^{\circ }}\] ---(7).
We know that $ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ . Let us use this result in equation (7).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( \dfrac{{{40}^{\circ }}+{{20}^{\circ }}}{2} \right)\sin \left( \dfrac{{{40}^{\circ }}-{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( \dfrac{{{60}^{\circ }}}{2} \right)\sin \left( \dfrac{{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( {{30}^{\circ }} \right)\sin \left( {{10}^{\circ }} \right)\] ---(8).
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this result in equation (8).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\left( \dfrac{\sqrt{3}}{2} \right)\left( \sin {{10}^{\circ }} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin {{10}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin \left( {{90}^{\circ }}-{{80}^{\circ }} \right)\] ---(9).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (9).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths