
Prove the following trigonometric equation.
$\tan \theta + \tan (60 + \theta ) + \tan (120 + \theta ) = 3\tan 3\theta $
Answer
595.8k+ views
Hint- For solving uses the identities of trigonometry. Take a single term at a time. Try to put the values of various trigonometric terms whose values are known and solve.
Complete step-by-step answer:
Given equation:
$ \Rightarrow \tan \theta + \tan (60 + \theta ) + \tan (120 + \theta ) = 3\tan 3\theta $
By taking L.H.S of the equation, we will proceed further
We know that
\[\left[ {\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right]\]
So substituting in the given equation we have
$ = \tan \theta + \dfrac{{\tan {{60}^0} + \tan \theta }}{{1 - \tan {{60}^0}\tan \theta }} + \dfrac{{\tan {{120}^0} + \tan \theta }}{{1 - \tan {{120}^0}\tan \theta }}$
Put the value of $\tan {60^0} = \sqrt 3 $ and $\tan {120^0} = \tan ({90^0} + {30^0}) = - \sqrt 3 $
$ = \tan \theta + \dfrac{{\sqrt 3 + \tan \theta }}{{1 - \sqrt 3 \tan \theta }} + \dfrac{{ - \sqrt 3 + \tan \theta }}{{1 - ( - \sqrt 3 )\tan \theta }}$
By taking LCM, we will proceed further
$
= \dfrac{{\tan \theta (1 - 3{{\tan }^2}\theta ) + (\sqrt 3 + \tan \theta )(1 + \sqrt 3 \tan \theta ) + ( - \sqrt 3 + \tan \theta )(1 - \sqrt 3 \tan \theta )}}{{(1 - \sqrt 3 \tan \theta )(1 + \sqrt 3 \tan \theta )}} \\
= \dfrac{{(\tan \theta - 3{{\tan }^3}\theta ) + (\sqrt 3 + 3\tan \theta + \tan \theta + \sqrt 3 {{\tan }^2}\theta ) + ( - \sqrt 3 + 3\tan \theta + \tan \theta - \sqrt 3 {{\tan }^2}\theta )}}{{(1 - 3{{\tan }^2}\theta )}} \\
$
As we know that $[(a - b)(a + b) = {a^2} - {b^2}]$
$ = \dfrac{{\tan \theta - 3{{\tan }^3}\theta + \sqrt 3 + 3\tan \theta + \tan \theta + \sqrt 3 {{\tan }^2}\theta - \sqrt 3 + 3\tan \theta + \tan \theta - \sqrt 3 {{\tan }^2}\theta }}{{1 - 3{{\tan }^2}\theta }}$
After cancelling the like terms we get
$
= \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
= \dfrac{{3(3\tan \theta - {{\tan }^3}\theta )}}{{1 - 3{{\tan }^2}\theta }} \\
$
As we know that $ \Rightarrow \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} = \tan 3\theta $
$ \Rightarrow 3\tan 3A = $ R.H.S
Hence the given equation is proved.
Note- For solving such types of questions which involve complex trigonometric terms, solve the equations by the use of trigonometric identities keeping in mind the value to be proved. In order to find higher values of trigonometric angles such as $\tan {120^0}$ , in this case try to simplify the angle in multiple of ${90^0}$ and some angle.
Complete step-by-step answer:
Given equation:
$ \Rightarrow \tan \theta + \tan (60 + \theta ) + \tan (120 + \theta ) = 3\tan 3\theta $
By taking L.H.S of the equation, we will proceed further
We know that
\[\left[ {\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right]\]
So substituting in the given equation we have
$ = \tan \theta + \dfrac{{\tan {{60}^0} + \tan \theta }}{{1 - \tan {{60}^0}\tan \theta }} + \dfrac{{\tan {{120}^0} + \tan \theta }}{{1 - \tan {{120}^0}\tan \theta }}$
Put the value of $\tan {60^0} = \sqrt 3 $ and $\tan {120^0} = \tan ({90^0} + {30^0}) = - \sqrt 3 $
$ = \tan \theta + \dfrac{{\sqrt 3 + \tan \theta }}{{1 - \sqrt 3 \tan \theta }} + \dfrac{{ - \sqrt 3 + \tan \theta }}{{1 - ( - \sqrt 3 )\tan \theta }}$
By taking LCM, we will proceed further
$
= \dfrac{{\tan \theta (1 - 3{{\tan }^2}\theta ) + (\sqrt 3 + \tan \theta )(1 + \sqrt 3 \tan \theta ) + ( - \sqrt 3 + \tan \theta )(1 - \sqrt 3 \tan \theta )}}{{(1 - \sqrt 3 \tan \theta )(1 + \sqrt 3 \tan \theta )}} \\
= \dfrac{{(\tan \theta - 3{{\tan }^3}\theta ) + (\sqrt 3 + 3\tan \theta + \tan \theta + \sqrt 3 {{\tan }^2}\theta ) + ( - \sqrt 3 + 3\tan \theta + \tan \theta - \sqrt 3 {{\tan }^2}\theta )}}{{(1 - 3{{\tan }^2}\theta )}} \\
$
As we know that $[(a - b)(a + b) = {a^2} - {b^2}]$
$ = \dfrac{{\tan \theta - 3{{\tan }^3}\theta + \sqrt 3 + 3\tan \theta + \tan \theta + \sqrt 3 {{\tan }^2}\theta - \sqrt 3 + 3\tan \theta + \tan \theta - \sqrt 3 {{\tan }^2}\theta }}{{1 - 3{{\tan }^2}\theta }}$
After cancelling the like terms we get
$
= \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
= \dfrac{{3(3\tan \theta - {{\tan }^3}\theta )}}{{1 - 3{{\tan }^2}\theta }} \\
$
As we know that $ \Rightarrow \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} = \tan 3\theta $
$ \Rightarrow 3\tan 3A = $ R.H.S
Hence the given equation is proved.
Note- For solving such types of questions which involve complex trigonometric terms, solve the equations by the use of trigonometric identities keeping in mind the value to be proved. In order to find higher values of trigonometric angles such as $\tan {120^0}$ , in this case try to simplify the angle in multiple of ${90^0}$ and some angle.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

