Prove the following trigonometric equation.
$\tan \theta + \tan (60 + \theta ) + \tan (120 + \theta ) = 3\tan 3\theta $
Answer
Verified
504.6k+ views
Hint- For solving uses the identities of trigonometry. Take a single term at a time. Try to put the values of various trigonometric terms whose values are known and solve.
Complete step-by-step answer:
Given equation:
$ \Rightarrow \tan \theta + \tan (60 + \theta ) + \tan (120 + \theta ) = 3\tan 3\theta $
By taking L.H.S of the equation, we will proceed further
We know that
\[\left[ {\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right]\]
So substituting in the given equation we have
$ = \tan \theta + \dfrac{{\tan {{60}^0} + \tan \theta }}{{1 - \tan {{60}^0}\tan \theta }} + \dfrac{{\tan {{120}^0} + \tan \theta }}{{1 - \tan {{120}^0}\tan \theta }}$
Put the value of $\tan {60^0} = \sqrt 3 $ and $\tan {120^0} = \tan ({90^0} + {30^0}) = - \sqrt 3 $
$ = \tan \theta + \dfrac{{\sqrt 3 + \tan \theta }}{{1 - \sqrt 3 \tan \theta }} + \dfrac{{ - \sqrt 3 + \tan \theta }}{{1 - ( - \sqrt 3 )\tan \theta }}$
By taking LCM, we will proceed further
$
= \dfrac{{\tan \theta (1 - 3{{\tan }^2}\theta ) + (\sqrt 3 + \tan \theta )(1 + \sqrt 3 \tan \theta ) + ( - \sqrt 3 + \tan \theta )(1 - \sqrt 3 \tan \theta )}}{{(1 - \sqrt 3 \tan \theta )(1 + \sqrt 3 \tan \theta )}} \\
= \dfrac{{(\tan \theta - 3{{\tan }^3}\theta ) + (\sqrt 3 + 3\tan \theta + \tan \theta + \sqrt 3 {{\tan }^2}\theta ) + ( - \sqrt 3 + 3\tan \theta + \tan \theta - \sqrt 3 {{\tan }^2}\theta )}}{{(1 - 3{{\tan }^2}\theta )}} \\
$
As we know that $[(a - b)(a + b) = {a^2} - {b^2}]$
$ = \dfrac{{\tan \theta - 3{{\tan }^3}\theta + \sqrt 3 + 3\tan \theta + \tan \theta + \sqrt 3 {{\tan }^2}\theta - \sqrt 3 + 3\tan \theta + \tan \theta - \sqrt 3 {{\tan }^2}\theta }}{{1 - 3{{\tan }^2}\theta }}$
After cancelling the like terms we get
$
= \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
= \dfrac{{3(3\tan \theta - {{\tan }^3}\theta )}}{{1 - 3{{\tan }^2}\theta }} \\
$
As we know that $ \Rightarrow \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} = \tan 3\theta $
$ \Rightarrow 3\tan 3A = $ R.H.S
Hence the given equation is proved.
Note- For solving such types of questions which involve complex trigonometric terms, solve the equations by the use of trigonometric identities keeping in mind the value to be proved. In order to find higher values of trigonometric angles such as $\tan {120^0}$ , in this case try to simplify the angle in multiple of ${90^0}$ and some angle.
Complete step-by-step answer:
Given equation:
$ \Rightarrow \tan \theta + \tan (60 + \theta ) + \tan (120 + \theta ) = 3\tan 3\theta $
By taking L.H.S of the equation, we will proceed further
We know that
\[\left[ {\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right]\]
So substituting in the given equation we have
$ = \tan \theta + \dfrac{{\tan {{60}^0} + \tan \theta }}{{1 - \tan {{60}^0}\tan \theta }} + \dfrac{{\tan {{120}^0} + \tan \theta }}{{1 - \tan {{120}^0}\tan \theta }}$
Put the value of $\tan {60^0} = \sqrt 3 $ and $\tan {120^0} = \tan ({90^0} + {30^0}) = - \sqrt 3 $
$ = \tan \theta + \dfrac{{\sqrt 3 + \tan \theta }}{{1 - \sqrt 3 \tan \theta }} + \dfrac{{ - \sqrt 3 + \tan \theta }}{{1 - ( - \sqrt 3 )\tan \theta }}$
By taking LCM, we will proceed further
$
= \dfrac{{\tan \theta (1 - 3{{\tan }^2}\theta ) + (\sqrt 3 + \tan \theta )(1 + \sqrt 3 \tan \theta ) + ( - \sqrt 3 + \tan \theta )(1 - \sqrt 3 \tan \theta )}}{{(1 - \sqrt 3 \tan \theta )(1 + \sqrt 3 \tan \theta )}} \\
= \dfrac{{(\tan \theta - 3{{\tan }^3}\theta ) + (\sqrt 3 + 3\tan \theta + \tan \theta + \sqrt 3 {{\tan }^2}\theta ) + ( - \sqrt 3 + 3\tan \theta + \tan \theta - \sqrt 3 {{\tan }^2}\theta )}}{{(1 - 3{{\tan }^2}\theta )}} \\
$
As we know that $[(a - b)(a + b) = {a^2} - {b^2}]$
$ = \dfrac{{\tan \theta - 3{{\tan }^3}\theta + \sqrt 3 + 3\tan \theta + \tan \theta + \sqrt 3 {{\tan }^2}\theta - \sqrt 3 + 3\tan \theta + \tan \theta - \sqrt 3 {{\tan }^2}\theta }}{{1 - 3{{\tan }^2}\theta }}$
After cancelling the like terms we get
$
= \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
= \dfrac{{3(3\tan \theta - {{\tan }^3}\theta )}}{{1 - 3{{\tan }^2}\theta }} \\
$
As we know that $ \Rightarrow \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} = \tan 3\theta $
$ \Rightarrow 3\tan 3A = $ R.H.S
Hence the given equation is proved.
Note- For solving such types of questions which involve complex trigonometric terms, solve the equations by the use of trigonometric identities keeping in mind the value to be proved. In order to find higher values of trigonometric angles such as $\tan {120^0}$ , in this case try to simplify the angle in multiple of ${90^0}$ and some angle.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE