# Prove the following trigonometric equation

$4\cos {12^0}\cos {48^0}\cos {72^0} = \cos {36^0}$

Answer

Verified

381k+ views

Hint- Use different trigonometric identities of combination of angles in order to solve the question, also keep in mind the RHS part for manipulation.

Complete step-by-step solution -

Given that: to prove $4\cos {12^0}\cos {48^0}\cos {72^0} = \cos {36^0}$

Since we know that

$2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$

Taking the LHS part and proceeding further

$

LHS = 4\cos {12^0}\cos {48^0}\cos {72^0} \\

= 2 \times \left( {2\cos {{12}^0}\cos {{48}^0}} \right) \times \cos {72^0} \\

$

With the help of above formula simplifying the middle term

$

= 2 \times \left[ {\cos \left( {{{48}^0} + {{12}^0}} \right) + \cos \left( {{{48}^0} - {{12}^0}} \right)} \right] \times \cos {72^0} \\

= 2 \times \left[ {\cos \left( {{{60}^0}} \right) + \cos \left( {{{36}^0}} \right)} \right] \times \cos {72^0} \\

= 2\cos {60^0}\cos {72^0} + 2\cos {36^0} \times \cos {72^0} \\

$

Now substituting the value of know trigonometric quantity in the above equation

$

= 2 \times \dfrac{1}{2} \times \cos {72^0} + 2\cos {36^0}\cos {72^0}{\text{ }}\left[ {\because \cos {{60}^0} = \dfrac{1}{2}} \right] \\

= \cos {72^0} + 2\cos {36^0}\cos {72^0} \\

$

Again using the formula in second part

$

= \cos {72^0} + \left[ {\cos \left( {{{72}^0} + {{36}^0}} \right) + \cos \left( {{{72}^0} - {{36}^0}} \right)} \right] \\

= \cos {72^0} + \left[ {\cos {{108}^0} + \cos {{36}^0}} \right] \\

$

Also we know that

$

\cos \left( {180 - \theta } \right) = - \cos \theta \\

\Rightarrow \cos {108^0} = \cos \left( {{{180}^0} - {{72}^0}} \right) = - \cos {72^0} \\

$

So, substituting the value in above equation we have

$

= \cos {72^0} + \cos {108^0} + \cos {36^0} \\

= \cos {72^0} - \cos {72^0} + \cos {36^0}{\text{ }}\left[ {\because \cos {{108}^0} = - \cos {{72}^0}({\text{proved above}})} \right] \\

= \cos {36^0} \\

$

Which is equal to the RHS.

Hence, the given trigonometric equation is proved.

Note- In order to solve types of complex problems including some random angle values always try to use the trigonometric identities in order to solve the problem. Never try to find the value of such trigonometric terms. Whenever while solving if some known values of trigonometric terms appear, put into the values of such terms. Also keep in mind the part to be proved for an easy solution.

Complete step-by-step solution -

Given that: to prove $4\cos {12^0}\cos {48^0}\cos {72^0} = \cos {36^0}$

Since we know that

$2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$

Taking the LHS part and proceeding further

$

LHS = 4\cos {12^0}\cos {48^0}\cos {72^0} \\

= 2 \times \left( {2\cos {{12}^0}\cos {{48}^0}} \right) \times \cos {72^0} \\

$

With the help of above formula simplifying the middle term

$

= 2 \times \left[ {\cos \left( {{{48}^0} + {{12}^0}} \right) + \cos \left( {{{48}^0} - {{12}^0}} \right)} \right] \times \cos {72^0} \\

= 2 \times \left[ {\cos \left( {{{60}^0}} \right) + \cos \left( {{{36}^0}} \right)} \right] \times \cos {72^0} \\

= 2\cos {60^0}\cos {72^0} + 2\cos {36^0} \times \cos {72^0} \\

$

Now substituting the value of know trigonometric quantity in the above equation

$

= 2 \times \dfrac{1}{2} \times \cos {72^0} + 2\cos {36^0}\cos {72^0}{\text{ }}\left[ {\because \cos {{60}^0} = \dfrac{1}{2}} \right] \\

= \cos {72^0} + 2\cos {36^0}\cos {72^0} \\

$

Again using the formula in second part

$

= \cos {72^0} + \left[ {\cos \left( {{{72}^0} + {{36}^0}} \right) + \cos \left( {{{72}^0} - {{36}^0}} \right)} \right] \\

= \cos {72^0} + \left[ {\cos {{108}^0} + \cos {{36}^0}} \right] \\

$

Also we know that

$

\cos \left( {180 - \theta } \right) = - \cos \theta \\

\Rightarrow \cos {108^0} = \cos \left( {{{180}^0} - {{72}^0}} \right) = - \cos {72^0} \\

$

So, substituting the value in above equation we have

$

= \cos {72^0} + \cos {108^0} + \cos {36^0} \\

= \cos {72^0} - \cos {72^0} + \cos {36^0}{\text{ }}\left[ {\because \cos {{108}^0} = - \cos {{72}^0}({\text{proved above}})} \right] \\

= \cos {36^0} \\

$

Which is equal to the RHS.

Hence, the given trigonometric equation is proved.

Note- In order to solve types of complex problems including some random angle values always try to use the trigonometric identities in order to solve the problem. Never try to find the value of such trigonometric terms. Whenever while solving if some known values of trigonometric terms appear, put into the values of such terms. Also keep in mind the part to be proved for an easy solution.

Recently Updated Pages

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE