Answer

Verified

451.5k+ views

Hint: The given expression is $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $, use the concept of taking complex conjugate to this equation keeping one thing in mind that complex conjugate effect only the iota terms and not any real term. This will help you reach the proof in this question.

The given expression is $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $……………………….. (1)

We need to prove that ${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$……………… (2)

Taking complex conjugate both the sides of equation (1) we get,

$\overline {x - iy} = \overline {\sqrt {\dfrac{{a - ib}}{{c - id}}} } $………………… (3)

Using the property of conjugate $\overline {\left( {a + ib} \right)} = \left( {\overline a + \overline {ib} } \right)$ in equation (3) we get,

$\overline x - \overline {iy} = \sqrt {\dfrac{{\overline a - \overline {ib} }}{{\overline c - \overline {id} }}} $……………… (4)

Now using the property that $\overline x = x{\text{ and }}\overline i = - i$in equation (4) we get,

$x + iy = \sqrt {\dfrac{{a + ib}}{{c + id}}} $……………………… (5)

Now let’s multiply equation (1) and equation (5) we get,

$(x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}}} \times \sqrt {\dfrac{{a - ib}}{{c - id}}} $

\[ \Rightarrow (x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}} \times \dfrac{{a - ib}}{{c - id}}} \]……………………….. (6)

Now using the identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ in equation (6) we get,

$ \Rightarrow {x^2} - {i^2}{y^2} = \sqrt {\dfrac{{{a^2} - {i^2}{b^2}}}{{{c^2} - {i^2}{d^2}}}} $

Using ${i^2} = - 1$ we get

$ \Rightarrow {x^2} + {y^2} = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}} $

Squaring both sides,

${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$

Hence proved

Note: Whenever we face such types of problems the key concept is based upon taking complex conjugate and using the various properties of complex conjugate, some of them are being mentioned above while performing the solution. This will help you get on the right track to reach the proof.

The given expression is $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $……………………….. (1)

We need to prove that ${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$……………… (2)

Taking complex conjugate both the sides of equation (1) we get,

$\overline {x - iy} = \overline {\sqrt {\dfrac{{a - ib}}{{c - id}}} } $………………… (3)

Using the property of conjugate $\overline {\left( {a + ib} \right)} = \left( {\overline a + \overline {ib} } \right)$ in equation (3) we get,

$\overline x - \overline {iy} = \sqrt {\dfrac{{\overline a - \overline {ib} }}{{\overline c - \overline {id} }}} $……………… (4)

Now using the property that $\overline x = x{\text{ and }}\overline i = - i$in equation (4) we get,

$x + iy = \sqrt {\dfrac{{a + ib}}{{c + id}}} $……………………… (5)

Now let’s multiply equation (1) and equation (5) we get,

$(x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}}} \times \sqrt {\dfrac{{a - ib}}{{c - id}}} $

\[ \Rightarrow (x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}} \times \dfrac{{a - ib}}{{c - id}}} \]……………………….. (6)

Now using the identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ in equation (6) we get,

$ \Rightarrow {x^2} - {i^2}{y^2} = \sqrt {\dfrac{{{a^2} - {i^2}{b^2}}}{{{c^2} - {i^2}{d^2}}}} $

Using ${i^2} = - 1$ we get

$ \Rightarrow {x^2} + {y^2} = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}} $

Squaring both sides,

${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$

Hence proved

Note: Whenever we face such types of problems the key concept is based upon taking complex conjugate and using the various properties of complex conjugate, some of them are being mentioned above while performing the solution. This will help you get on the right track to reach the proof.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE