Prove the following; If $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $ prove that ${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$.
Last updated date: 27th Mar 2023
•
Total views: 308.4k
•
Views today: 2.85k
Answer
308.4k+ views
Hint: The given expression is $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $, use the concept of taking complex conjugate to this equation keeping one thing in mind that complex conjugate effect only the iota terms and not any real term. This will help you reach the proof in this question.
The given expression is $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $……………………….. (1)
We need to prove that ${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$……………… (2)
Taking complex conjugate both the sides of equation (1) we get,
$\overline {x - iy} = \overline {\sqrt {\dfrac{{a - ib}}{{c - id}}} } $………………… (3)
Using the property of conjugate $\overline {\left( {a + ib} \right)} = \left( {\overline a + \overline {ib} } \right)$ in equation (3) we get,
$\overline x - \overline {iy} = \sqrt {\dfrac{{\overline a - \overline {ib} }}{{\overline c - \overline {id} }}} $……………… (4)
Now using the property that $\overline x = x{\text{ and }}\overline i = - i$in equation (4) we get,
$x + iy = \sqrt {\dfrac{{a + ib}}{{c + id}}} $……………………… (5)
Now let’s multiply equation (1) and equation (5) we get,
$(x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}}} \times \sqrt {\dfrac{{a - ib}}{{c - id}}} $
\[ \Rightarrow (x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}} \times \dfrac{{a - ib}}{{c - id}}} \]……………………….. (6)
Now using the identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ in equation (6) we get,
$ \Rightarrow {x^2} - {i^2}{y^2} = \sqrt {\dfrac{{{a^2} - {i^2}{b^2}}}{{{c^2} - {i^2}{d^2}}}} $
Using ${i^2} = - 1$ we get
$ \Rightarrow {x^2} + {y^2} = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}} $
Squaring both sides,
${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$
Hence proved
Note: Whenever we face such types of problems the key concept is based upon taking complex conjugate and using the various properties of complex conjugate, some of them are being mentioned above while performing the solution. This will help you get on the right track to reach the proof.
The given expression is $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $……………………….. (1)
We need to prove that ${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$……………… (2)
Taking complex conjugate both the sides of equation (1) we get,
$\overline {x - iy} = \overline {\sqrt {\dfrac{{a - ib}}{{c - id}}} } $………………… (3)
Using the property of conjugate $\overline {\left( {a + ib} \right)} = \left( {\overline a + \overline {ib} } \right)$ in equation (3) we get,
$\overline x - \overline {iy} = \sqrt {\dfrac{{\overline a - \overline {ib} }}{{\overline c - \overline {id} }}} $……………… (4)
Now using the property that $\overline x = x{\text{ and }}\overline i = - i$in equation (4) we get,
$x + iy = \sqrt {\dfrac{{a + ib}}{{c + id}}} $……………………… (5)
Now let’s multiply equation (1) and equation (5) we get,
$(x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}}} \times \sqrt {\dfrac{{a - ib}}{{c - id}}} $
\[ \Rightarrow (x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}} \times \dfrac{{a - ib}}{{c - id}}} \]……………………….. (6)
Now using the identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ in equation (6) we get,
$ \Rightarrow {x^2} - {i^2}{y^2} = \sqrt {\dfrac{{{a^2} - {i^2}{b^2}}}{{{c^2} - {i^2}{d^2}}}} $
Using ${i^2} = - 1$ we get
$ \Rightarrow {x^2} + {y^2} = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}} $
Squaring both sides,
${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$
Hence proved
Note: Whenever we face such types of problems the key concept is based upon taking complex conjugate and using the various properties of complex conjugate, some of them are being mentioned above while performing the solution. This will help you get on the right track to reach the proof.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
