# Prove the following; If $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $ prove that ${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$.

Answer

Verified

382.8k+ views

Hint: The given expression is $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $, use the concept of taking complex conjugate to this equation keeping one thing in mind that complex conjugate effect only the iota terms and not any real term. This will help you reach the proof in this question.

The given expression is $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $……………………….. (1)

We need to prove that ${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$……………… (2)

Taking complex conjugate both the sides of equation (1) we get,

$\overline {x - iy} = \overline {\sqrt {\dfrac{{a - ib}}{{c - id}}} } $………………… (3)

Using the property of conjugate $\overline {\left( {a + ib} \right)} = \left( {\overline a + \overline {ib} } \right)$ in equation (3) we get,

$\overline x - \overline {iy} = \sqrt {\dfrac{{\overline a - \overline {ib} }}{{\overline c - \overline {id} }}} $……………… (4)

Now using the property that $\overline x = x{\text{ and }}\overline i = - i$in equation (4) we get,

$x + iy = \sqrt {\dfrac{{a + ib}}{{c + id}}} $……………………… (5)

Now let’s multiply equation (1) and equation (5) we get,

$(x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}}} \times \sqrt {\dfrac{{a - ib}}{{c - id}}} $

\[ \Rightarrow (x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}} \times \dfrac{{a - ib}}{{c - id}}} \]……………………….. (6)

Now using the identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ in equation (6) we get,

$ \Rightarrow {x^2} - {i^2}{y^2} = \sqrt {\dfrac{{{a^2} - {i^2}{b^2}}}{{{c^2} - {i^2}{d^2}}}} $

Using ${i^2} = - 1$ we get

$ \Rightarrow {x^2} + {y^2} = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}} $

Squaring both sides,

${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$

Hence proved

Note: Whenever we face such types of problems the key concept is based upon taking complex conjugate and using the various properties of complex conjugate, some of them are being mentioned above while performing the solution. This will help you get on the right track to reach the proof.

The given expression is $x - iy = \sqrt {\dfrac{{a - ib}}{{c - id}}} $……………………….. (1)

We need to prove that ${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$……………… (2)

Taking complex conjugate both the sides of equation (1) we get,

$\overline {x - iy} = \overline {\sqrt {\dfrac{{a - ib}}{{c - id}}} } $………………… (3)

Using the property of conjugate $\overline {\left( {a + ib} \right)} = \left( {\overline a + \overline {ib} } \right)$ in equation (3) we get,

$\overline x - \overline {iy} = \sqrt {\dfrac{{\overline a - \overline {ib} }}{{\overline c - \overline {id} }}} $……………… (4)

Now using the property that $\overline x = x{\text{ and }}\overline i = - i$in equation (4) we get,

$x + iy = \sqrt {\dfrac{{a + ib}}{{c + id}}} $……………………… (5)

Now let’s multiply equation (1) and equation (5) we get,

$(x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}}} \times \sqrt {\dfrac{{a - ib}}{{c - id}}} $

\[ \Rightarrow (x - iy)(x + iy) = \sqrt {\dfrac{{a + ib}}{{c + id}} \times \dfrac{{a - ib}}{{c - id}}} \]……………………….. (6)

Now using the identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ in equation (6) we get,

$ \Rightarrow {x^2} - {i^2}{y^2} = \sqrt {\dfrac{{{a^2} - {i^2}{b^2}}}{{{c^2} - {i^2}{d^2}}}} $

Using ${i^2} = - 1$ we get

$ \Rightarrow {x^2} + {y^2} = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}} $

Squaring both sides,

${\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}$

Hence proved

Note: Whenever we face such types of problems the key concept is based upon taking complex conjugate and using the various properties of complex conjugate, some of them are being mentioned above while performing the solution. This will help you get on the right track to reach the proof.

Recently Updated Pages

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers